
Concurrent Clustered Programming?

(Extended Abstract)

Vijay Saraswat1?? and Radha Jagadeesan2???

1 IBM T.J. Watson Research Lab
2 School of CTI, DePaul University

Abstract. We present the concurrency and distribution primitives of X10, a mod-
ern, statically typed, class-based object-oriented (OO) programming language,
designed for high productivity programming of scalable applications on high-end
machines. The basic move in the X10 programming model is to reify locality
through a notion of place, which hosts multiple data items and activities that op-
erate on them. Aggregate objects (such as arrays) may be distributed across mul-
tiple places. Activities may dynamically spawn new activities in mulitple places
and sequence them through a finish operation that detects termination of ac-
tivities. Atomicity is obtained through the use of atomic blocks. Activities may
repeatedly detect quiescence of a data-dependent collection of (distributed) activ-
ities through a notion of clocks, generalizing barriers. Thus X10 has a handful of
orthogonal constructs for space, time, sequencing and atomicity. X10 smoothly
combines and generalizes the current dominant paradigms for shared memory
computing and message passing.
We present a bisimulation-based operational semantics for X10 building on the
formal semantics for “Middleweight Java”. We establish the central theorem of
X10: programs without conditional atomic blocks do not deadlock.

1 Introduction

A holy grail of concurrency and theoretical programming languages is the develop-
ment of clean but real concurrent languages. Real enough that they can be used for
regular programming tasks by millions of programmers. Clean enough that they can be
formalized, theorems proven, and correct compilers, transformation systems, program
development methodologies and interactive refactoring tools developed.

There has always been considerable theoretical research in concurrency – CCS,
CSP, process algebras, CCP, π-calculus etc. On the practical front, in imperative lan-
guages, CILK[1,2] has introduced some novel ideas such as work-stealing for symmet-
ric multi-processors (SMPs). Titanium [3], Co-Array Fortran [4] and Unified Parallel
C [5] (UPC) have introduced the Partitioned Global Address Space (PGAS) model [6]
in JAVA, Fortran and C respectively, albeit in a Single Program Multiple Data (SPMD)

? We thank Bard Bloom, Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff, Allan Kielstra, Doug Lea, Maged Michael, Robert O’Callahan, Christoph von Praun,
Vivek Sarkar, and Jan Vitek for many discussions on the topic of this paper.

?? Research supported in part by DARPA No. NBCH30390004.
??? Research supported in part by NSF 0430175.

2 Vijay Saraswat and Radha Jagadeesan

framework. However, the state of the art in concurrent high performance computing
continues to be library-based (e.g. OpenMP [7] for shared-memory concurrency and
MPI [8] for message-passing) rather than language-based. Mainstream languages have
been slow to adopt concurrency. JAVAT M [9] has the best thought out model (some re-
cent work has been proposed on a memory model for C++ [10]), but it suffers from sev-
eral problems. A single global heap does not scale – complex memory models [11] are
needed to enable efficient implementation on modern multi-processors. As is widely ac-
cepted, lock-based synchronization is very brittle – leading to underlocking/overlocking
and bugs that are very hard to find. For high performance (HPCS) computation, JAVA
does not support multidimensional arrays, user-definable value types, relaxed exception
model, aggregate operations etc [12,13].

A number of ideas have come together now which promise a breakthrough. The
exciting new idea of atomic blocks [14,15,16] has raised the possibility that the promise
of robust, reliable parallel imperative programming may be at hand. A fundamental
new opportunity presents itself with the development of the next generation of high
performance computers (e.g. capable of ≈ 1015 operations per second). These will be
based on scale-out techniques rather than clock rate increases (because of power and
heat dissipation issues). This leads to a notion of clustered computing: a single computer
may contain hundreds of thousands of tightly coupled (multi-threaded/SMP) nodes.
Unlike a distributed model, failure of a single node is tantamount to failure of the entire
machine (and all nodes may be assumed to lie in the same trust boundary). However
because of latency and bandwidth, the notion of a single uniform shared memory is no
longer appropriate for such machines.

Together with our colleagues, we have have designed an explicitly parallel program-
ming language for clustered computing, X10 [17], under the aegis of the DARPA HPCS
programme. The fundamental goal of X10 is to enable scalable, high-performance,
high-productivity programming for high-end computers – for traditional numerical com-
putation workloads (such as weather simulation, molecular dynamics, particle transport
problems etc) as well as commercial server workloads. X10 is explicitly parallel be-
cause of our unwillingness to rely on heroic compilers to automatically extract enough
parallelism to keep hundreds of thousands of nodes busy. For productivity, we have
chosen to design X10 in the familiar statically typed, class-based, object-oriented pro-
gramming mould; X10 is intended to be readily accessible to programmers in JAVA-like
languages. Thus X10 is intended to support in an integrated fashion the set of problems
that are today addressed by libraries such as OpenMP and MPI bolted onto base pro-
gramming languages such as Fortran or C.

A reference manual for the language has been completed [17]. The language has
been implemented via a translator to JAVA, developed using the Polyglot compiler
framework. A number of programs have been written in X10 and preliminary pro-
ductivity measures are reported in [18]. In this paper we lay out the basic semantic
foundations of X10.

1.1 Basic paradigm

Space. Local vs remote memory latency and bandwidth ratios for large scale-out ma-
chines are often higher than two, perhaps three orders of mangitude. Another problem

Concurrent Clustered Programming (Extended Abstract) 3

is that current architecture research has not yet established the efficiency of sequenti-
cally consistent (SC) execution of threads. Attempts to provide a “weaker” semantics
have proven very difficult to formalize and understand (cf the work on the Java memory
model [9,11]).

Our approach to this dilemma is to introduce the notion of a place. A place consists
of a collection of data and activities that operate on the data. (A computation may
consist of millions of places.) A programmer may think of a place as an MPI task
or a node in a distributed Java Virutal Machine (JVM) with its own heap and collection
of threads.

An asynchronous activity is created by a statement async(p)s where p is a place
expression and s is a statement. Such a statement is executed by spawning an activity
at the place designated by p to execute statement s. An activity is created in a place
and remains resident at that place for its lifetime. s (and p) may access lexically scoped
final variables.

Each activity has a sequentially consistent view of the data at that place and may
operate only on the data at the place. It may reference data at other places, but must
operate on them only by launching asynchronous activities (at the place where the data
lives). Thus X10 supports a globally asynchronous, locally synchronous (GALS) com-
putation model, familiar from hardware design and embedded systems research. Unlike
other PGAS languages, X10 is not SPMD – different (collections of) activities may run
at each place.

Any activity may use the place expression here to reference the current place.
Places are assumed to be totally ordered; if p is a place expression, then p.next is
a place expression denoting the next place in the order. There are no expressions for
creating a new place, rather each computation is initiated with a fixed number of places.3

Each object carries its location through a final field location. Access to non-final
fields is permitted only for objects at the same place. Any attempt to access remote
mutable data results in a BadPlaceException (BPE).

EXAMPLE 1 (LATCH). A latch is an object which is initially unlatched, and may be-
come latched. Once it is latched it stays latched. It may be implemented in X10 thus:4

class Latch {
boolean forced = false;
nullable Object result = null;
atomic boolean setValue(nullable Object val) {

if (forced) return false;
this.result = val; this.forced = true; return true;

}
Object force() {when (forced) {return result;}}

}

3 This is consistent with most MPI programs that are started with a fixed number of processes.
4 In X10, reference types do not contain null by default (unlike JAVA), instead the nullable

type constructor must be used to construct a type with the value null. This is one of the
sequential features of X10 we do not discuss in this paper for lack of space.

4 Vijay Saraswat and Radha Jagadeesan

Sequencing. Since X10 supports fine-grained asynchronous, parallel activities – even
a remote read is an activity – a reliable mechanism is needed to detect termination.
X10 provides a finish construct (Section 2.4). Intuitively, finish S executes S
and suspends until all activities created while doing so have terminated (normally or
abruptly).

EXAMPLE 2 (FUTURES). Consider a new expression of the form future (p){e}
where e is of type T. It is desired that this stand for a value of type future<T>. When
this is forced, it will return a value of type T which is the result of evaluating the
expression e in the place p. Such an expression may be implemented as a new latch L,
with the following statement executed in parallel:

async(p){finish T X = e; async(L.location){L.setValue(X);}}

This example shows how distributed datastructures may be created in X10 (even with-
out using distributed arrays); the field of an object may contain a reference to an object
at a different place.

Atomicity. How can multiple activities running in the same place reliably access shared
data? JAVA-like languages support a notion of monitors – the programmer must write
code that explicitly obtains and releases locks [9]. Our experience is that locks are a
very low-level and error-prone synchronization mechanism, making it very easy for
programmers to write erroneous code that underlocks (causing race conditions) or over-
locks (causing deadlock). Instead X10 supports atomic blocks (cf. [15,19,20]) (Sec-
tion 2.2). The statement when(c) s where s is a statement blocks until (if ever) a
state is reached in which c evaluates to true; in this state s is executed atomically –
in a single step as if all other activities are frozen.

when is the only construct for atomicity and mutual exclusion in X10: constructs
such as clocks (Section 2.5) can be expressed using when. This power comes at the cost
of potential deadlock, a risk that can be avoided by using the more restrictive clocks.

We use the shorthand atomic s for when(true) s. We permit the modifier
atomic on method definitions and take that to mean that the body of the method is
enclosed in an atomic.

EXAMPLE 3 (CAS). The following class implements a compare and swap (CAS) op-
eration, the basis for many highly concurrent, non-blocking (lock-free, wait-free) data-
structures (e.g. [21,22]). In the code below target is defined in the lexically enclosing
environment.

atomic boolean CAS(Object old, Object new){
if (target.equals(old)){target = new;return true;}
return false;
}

Time. Thus an X10 computation consists of a large number of asynchronous activities
scattered across space. We now introduce a notion of time. Many scientific computa-
tions need to progress in a sequence of phases. In each phase, activities (scattered across

Concurrent Clustered Programming (Extended Abstract) 5

multiple places) read and write shared data (e.g. a distributed array). Once all activities
have performed one phase of their calculations, each is informed of this global quies-
cence and computation moves to the next phase, and the process repeats. For instance,
in a molecular dynamics application, it may be necessary for a controller activity to
determine that (the activity associated with) each molecule has computed the force in-
cident on it from all other molecules, and hence its instantaneous acceleration a. The
controller may then advance simulation time, causing each molecule to determine its
new position p and velocity v (as a function of its mass m, a and old p and v).

In SPMD languages this phasing is accomplished using the notion of a (split-phase)
barrier. For instance, UPC provides a single barrier for all threads in a computation,
accessed through upc notify (signal that this thread has reached the barrier) and
upc wait (wait until all threads have reached this barrier).

X10 clocks (Section 2.5) can be thought of as obtained from split-phase barriers
while (1) permitting dynamic creation, (2) permitting dynamic (de-) registration of ac-
tivities, and (3) ensuring that operations are race-free (hence determinate). By race-free
we mean that two operations on the same clock performed at the same time by two
separate activities commute with each other (hence cannot conflict).

Concretely, a clock is a data-structure that may be dynamically created (clock
c is new); an activity may create as many clocks as it wishes.5 Conceptually each
clock is associated with an integer that specifies the current phase of the clock; this
integer is initially zero, and is incremented each time the clock advances. A clock is
said to advance to the next phase when all activities registered with it have quiesced
(see below).

The activity creating the clock is automatically registered with it. An activity A may
at any time deregister itself from clock c by executing c.drop(); any subsequent
attempt by A to invoke an operation on c results in a ClockUseException (CUE)
being thrown. A may indicate that it has quiesced on c (in its current phase) by executing
c.resume(). It may suspend until all clocks it is registered with have moved to the
next phase by executing the next; statement (this automatically resumes all clocks the
activity is registered with). There is no statement allowing A to suspend until a given
clock it is registered with has moved to the next phase; such a statement can easily cause
deadlock.

An activity A may register a new activity it is spawning with clocks c1, ..., cn
by executing async(P) clocked (c1,...,cn) s. We require the Live Clock
Condition (LCC) to hold: A itself be live on ci (for i in 1,...,n). That is, A should
be registered with ci and not have quiesced on it. A ClockUseException is thrown
if this condition is violated.

The LCC ensures that the only way an activity can be registered on a pre-existing
clock c is if it is created by an activity that is live on c. While an activity is live on
c, c cannot advance; hence X10 has no race conditions between registration and clock
advance. (It is easy to see that permitting an activity to read a clock as the value of some
field of some object and register itself on it could cause a race condition.) The execution
of c.resume() (or c.drop()) operations by two activities commute, hence they do
not constitute a race. Thus X10 clocks are race-free.

5 In particular, we remark that clocks may be used to obtain oversampling through nesting.

6 Vijay Saraswat and Radha Jagadeesan

A key semantic property of a clock is that clock quiescence is stable (Theorem 5):
once every activity registered on the clock has quiesced, no further action by any activity
can change this fact. Therefore when the last activity quiesces, it can trigger a clock
advance.

finish interacts with clocks. finish async clocked(c) next; dead-
locks when executed by an activity A registered on c. (A cannot advance till the async
terminates; that cannot happen until A executes c.resume().) To ensure deadlock
freedom, X10 requires that the activity executing the body of a finishmust not spawn
a clocked async while doing so. This can be accomplished dynamically by throwing a
ClockUseException in such a case (Section 2.5) or statically, with appropriate
type rules.

The fundamental theorem of X10 is that these conditions are sufficient to ensure
that programs without when are deadlock-free (Theorem 9).

EXAMPLE 4 (NOW). Imagine we wish to define a construct now (c) s intended
to ensure that execution of statement s terminate completely in the current phase of
the clock c. This may be accomplished by: async clocked(c) finish async
s;

The outer activity is registered on c; hence c cannot advance until it performs a
next or terminates. It cannot terminate until the finish is completed. An async is
used to ensure that the execution of s is done in an activity which is not registered with
any old clock. Thus any next performed by s will interact only with “new” clocks
(produced during the execution of s).

1.2 Rest of this paper

This completes a description of the basic concurrency and distribution primitives in
X10. We briefly mention those aspects of X10 that are not covered in this abstract for
reasons of space (details in [17]). X10 supports a rooted, synchronous, non-resumptive
exception model, with a try/catch/finally construct. An exception thrown by
an abruptly terminating activity A is caught by the enclosing activity suspended on
a finish waiting for A to terminate. This paper, however, permits exceptions to be
raised but not caught; thus any exception raised is fatal and terminates the entire com-
putation. X10 supports a notion of immutable datastructures called value types and an
explicit nullable type annotation (to specify that the type contains the value null).
X10 supports multi-dimensional arrays that may be distributed across multiple places,
using the concept of named regions (set of index points), and distributions (mapping of
these points to places). X10 also has a static place-based type system (augmented with
dynamic place-casts).

The rest of this paper presents a formal operational semantics for the concurrency
and distribution features of X10. The semantics is intended to be used as a basis for in-
formal reasoning with programs, program development methodologies, advanced com-
piler optimizations, and program refactoring.

The primary contributions of this paper are as follows. (1) We present a simple pro-
gramming model for clustered computing. (2) We show that programs in a rich subset

Concurrent Clustered Programming (Extended Abstract) 7

– including finish and nested clocks – cannot deadlock. (3) We formalize a com-
positional operational semantics based on bisimulation. (4) We establish other basic
properties of the programming model: equational laws for various constructs; the cor-
rectness of programs is not affected by the number of places; clock quiescence is stable.
We refer the reader to the sister paper [18] for a discussion of how lock-free computa-
tions, CILK programs, systolic arrays and MPI computations can be expressed in this
subset.

The model is formalized in the style of previous JAVA-centric calculi focusing on
types ([23]) and (sequential) imperative programming (MJ [24]).

1.3 Related work

While there has been a lot of work on formal models for concurrency, there has been
less work on formal models for real concurrent languages. We have chosen to design
X10 on top of a modern OO language and present the semantics as such in this paper.
However the core concurrency and distribution model can also be adapted for other
imperative languages such as C or Fortran.

X10 is a member of the PGAS family of languages and is distinguished from them
in not being based on an SPMD model, permitting multiple activities per locale or
place, supporting very general notions of clocked computations, supporting sequencing
of distributed computations (through finish), and using atomic blocks for mutual
exclusion.

The X10 async and finish operations are related to CILK’s spawn and sync
constructs but are not arbitrarily scoped to methods. (CILK has no notion of places,
distributed arrays, clocks or atomic blocks.)

While being similar to JAVA in its sequential aspects, X10 has a completely different
concurrency and distribution model. All the Java Grande Forum benchmarks [25] that
use threads (crypt, lufact, moldyn, montecarlo, raytracer, series, sor) have been ported
to the deadlock-free fragment of X10.

An MPI program may be represented in X10 with a place per MPI process, running
a single main activity. The MPI-2 communication primitives can be directly imple-
mented with asyncs.

2 The X10 Programming Model

Our presentation is built on top of the MJ calculus [24]. It includes mutable state, block
structured values and basic object-oriented features. Additional sequential constructs
may be added in a routine fashion.

An MJ configuration consists of a quadruple (H,V S,s,FS) where:

– H represents the heap of objects. The heap is represented as a binding of object
names to a pair of the class name and a finite function mapping field names to
values (objects or basic values).

– V S, the variable stack, represents the block structure of the underlying program-
ming language. The variable stack changes during reduction whenever a new scope
is added or removed.

8 Vijay Saraswat and Radha Jagadeesan

– s is the statement currently being executed.
– FS the frame stack, represents the continuation that follows the execution of s. In

the case that s is an expression that evaluates to a value (say v), the head of the
frame stack is an open frame with a hole to indicate the position at which v is to
be substituted. Otherwise (s is a statement without a return value), the head of the
frame stack is a closed frame without a hole.

This structure is changed for X10 by taking a configuration to be a triple (H,σ,∆) where
H is a heap (changed from MJ to include place information with each object), σ is a
constraint store used to model clocks and ∆ is a tree each of whose nodes is labeled with
an activity. An activity is of the form p : (s,(V S,FS,K)) where p indicates the place
of the activity, VS and FS are as above and K is a clock-map associating object id’s
representing clocks with their associated data structure (clock-counters, Section 2.5).
These changes are summarized in Figure 1.

The Table is to be taken in conjunction with Figure 1 and the Table in Section 2.3
of [24]. The former defines the syntactic categories programs (p), class (cd), field (f d),
constructor(cnd), method (md) definitions, expressions (MJe below), and statements
(MJs). The latter defines MJ’s Variable Stack (MJVS), Closed Frame (MJCF), and Open
Frame (MJOF). We refer the reader to [24] for a detailed description of MJ.

e ::=pe | MJe
s ::=(Statement)

when(c) s
async(p)clocked(c̄)s
finish s
next;
clock x is new
resume c
drop c
MJs

pe::=(Place Expression)
here | pe.next | v.place

(X10 Conf.) Xc ::= (H,σ,∆) | E
(Activity) a ::= p : (s,(VS,FS,K)) | E
(Term. Activity)ta ::= p : (; ,(VS, [], [])) | E
(Frame Stack) FS ::= F ◦FS | []
(Frame) F ::= CF | OF
(Variable Stack)VS ::= MJVS
(Places) p,q ::= int
(Closed Frame) CF ::= waitn;

waitf; | MJCF
(Open Frame) OF ::= async(•) s

| when(•) s | MJOF
(Values) v ::= null | o | p
(Error) E ::= BPE | CUE | FE | NPE | CCE

Table 1. Syntax and Configurations for X10

The transition relation relates configurations. X10 specifies the top-level statement
is executed implicitly in a finish.

Tree transitions. The transition relation on composite configurations is described as a
tree transformation. Let ∆̄ be the (possibly empty) sequence ∆0, . . . ,∆k−1. We use the
notation n� ∆̄ to indicate a tree with root node n and subtrees ∆0, . . . ,∆k−1.

A rule ∆[∆1] −→ ∆[∆2] is understood as saying that a tree ∆ containing a subtree
∆1 can transition to a tree which is the same as ∆ except that the subtree ∆1 is re-
placed by ∆2. Thus if ∆ is the tree A1(A2(A3,A4),A5(A6)) then an application of the

Concurrent Clustered Programming (Extended Abstract) 9

rule ∆[A2] −→ ∆[A8(A9)] gives the tree A1(A8(A9,A3,A4),A5(A6)). An application of
the rule ∆[A2 �∆′] −→ ∆[A8(A9)] gives the tree A1(A8(A9),A5(A6)) (the entire subtree
at A2 is replaced).

(COMPOSITE)

(H,σ,∆1)−→ (H ′,σ′,∆2)
(H,σ,∆[∆1])−→ (H ′,σ′,∆[∆2])

MJ transitions. The transition system incorporates mutatis mutandis all the MJ reduc-
tion and decomposition reduction rules ([24, Fig 2,3])) for the various MJ constructs,
except for changes caused by the introduction of places. These changes are: the rule
(E-New) is replaced by (New) below (to ensure the new object is created at the right
place); the rules (E-Method), (E-MethodVoid), (E-FieldAccess) and (E-FieldWrite) are
replaced by rules that check that the target object is local. We illustrate below with
FieldAccess.

2.1 Places and activities
The heap has place information for each object, recoverable using the final field location.
Access to non-final fields is permitted only for objects at the same place. Access to ob-
jects located at a different place leads to a BPE.

(HERE)

(H,σ, p : (here,S))−→ (H,σ, p : (p,S))

(NEW)

cnBody(C) = (x̄, s̄),∆c(C) = C̄,o 6∈ dom(H),
F = [location 7→ p, f 7→ null, f ∈ f ields(C)],BS = [this 7→ (o,C), x̄ 7→ (v̄,C̄)]
(H,σ, p : (new C(v̄),(V S,FS,K)))

−→ (H[o 7→ p : (C,F)],σ, p : (s̄,((BS◦ [])◦V S,(return o;)◦FS),K))

(FIELDACCESS)

H(o) = q : ((C,F)),F (f) = v,q = p or f is final
(H,σ, p : (o. f ,S))−→ (H,σ, p : (v,S))

(FIELDACCESSBPE)

H(o) = q : ((C,F)), p 6= q and f is not final
(H,σ, p : (o. f ,S))−→ BPE

2.2 Atomic blocks
when(e) s completes in one step if and when e evaluates to true in the current store and
without interruption s completes execution. X10 syntax rules guarantee that an atomic
block cannot execute an async or a clock operation; hence K remains unchanged in
the antecedent of Rule Atomic1.

(ATOMIC1)

(H,σ, p : (e,(VS, [],K))) ?−→ (H1,σ1, p : (true,(VS1, [],K))
(H1,σ1, p : (s,(VS1, [],K))) ?−→ (H2,σ2, p : (; ,(VS2, [],K))) | E

(H,σ, p : (when(e) s,(VS,FS,K)))−→ (H2,σ2, p : (; ,(VS2,FS,K))) | E

10 Vijay Saraswat and Radha Jagadeesan

(ATOMIC2)

(H,σ, p : (e,(VS, [],K))) ?−→ E

(H,σ, p : (when(e) s,(VS,FS,K)))−→ E

2.3 Asynchronous activities

Async without clocks In async(e) s, the expression e must be evaluated first. It is con-
sidered locally terminated after it has spawned the new activity. The spawned activity
is started with an empty continuation, but is given the variable stack of the spawning
environment (the static semantics ensures only final variables can be accessed in VS).

(ASYNC1)

(H,σ, p : (async(e) s,(VS,FS,K)))−→ (H,σ, p : (e,(VS,async(•) s◦FS,K)))

(ASYNC2)

(H,σ, p : (async(q) s,(VS,FS,K))−→ (H,σ, p : (; ,(VS,FS,K))�q : (s,(VS, [], [])))

2.4 finish

The finish rule creates a nested activity, with the given variable stack and clocks but no
continuation. 6 On termination of this activity and its subtree the parent activity may
continue, with updated VS and K. The second and third rules replace an entire subtree
of terminated activities with a single node. (For the purposes of the simpler exception
semantics of this paper, the last rule could have been simplified to propagate exceptions
more eagerly.)

(FINISH1)

(H,σ, p : (finish(s),(VS,FS,K)))−→ (H,σ, p : (waitf;,([],FS, []))� p : (s,(VS, [],K)))

(FINISH2)

∆ is a tree of terminated activities w/ no exceptions
(H,σ, p : (waitf;,([],FS, []))�q : (; ,(VS, [],K))�∆)−→ (H,σ, p : (; ,(VS,FS,K)))

(FINISH3)

∆ is a tree of terminated activities containing an exception
(H,σ, p : (waitf;,([],FS, []))�∆)−→ FE

In the last rule the exception could have been propagated more eagerly; we choose
the above formulation because it reflects the semantics of finish in the richer model
in which exceptions are propagated and may be caught.

2.5 Clocks

To specify the semantics of clocks, we use the streamed short circuit technique for
detecting stable properties of distributed systems from concurrent logic programming

6 This nesting is necessary: consider finish {s1; finish {s2;} s3;}. s3 cannot be
initiated until all the activities spawned by s2 have terminated; but there is no requirement
that activities spawned by s1 have terminated.

Concurrent Clustered Programming (Extended Abstract) 11

(NEW CLOCK)

(H,σ, p : (clock x is new;,(VS,FS,K)))
−→ (H,σ+g, p : (; ,(VS,FS,K[x 7→ (g,g)])))

(CLOCK-ASYNC)

{c0, . . . ,cn−1} ⊆ |K|,waitf; not in FS,
K′ = K[ci 7→ (Kg(ci),Xi) | i < n],K′′ = [ci 7→ (Kg(ci),Yi) | i < n]
(H,σ, p : (async(q)clocked(c0, . . . ,cn−1) s,(VS,FS,K)))
−→ (H,σ∪{Kl(ci) = Xi +Yi | i < n}, p : (; ,(VS,FS,K′))�q : (s,(VS, [],K′′)))

(CLOCK-ASYNC-EXCEPTION)

{c0, . . . ,cn−1} 6⊆ |K| or waitf; in FS

(H,σ, p : (async(q)clocked(c0, . . . ,cn−1) s,(VS,FS,K)))−→ CUE

(RESUME)

(H,σ, p : (resume c,S))−→ (H,σ∪{Kl(c).car= 0}, p : (; ,S))

(NEXT)

σ′ = σ∪{Kl(c).car= 0 | c ∈ |K|}
(H,σ, p : (next;,S))−→ (H,σ′, p : (waitn;,S))

(WAITNEXT)

σ ` Kg(c).car= 0 (∀c ∈ |K|)
K′ = [c 7→ (Kg(c).cdr,Kl(c).cdr) | c ∈ |K|]
(H,σ, p : (waitn;,(VS,FS,K)))−→ (H,σ, p : (; ,(VS,FS,K′)))

(DROP)

(H,σ, p : (drop c,(VS,FS,K)))−→ (H,σ∪{0(Kl(c))}, p : (; ,(VS,FS,K \ c)))

(TERMINATE)

(H,σ, p : (; ,(VS, [],K)))−→ (H,σ∪{0(Kl(c)) | c ∈ |K|}, p : (; ,(VS, [], [])))

Table 2. Clock Rules

[26,27]. This technique makes the proof of the Clock Quiescence Stability theorem
(Theorem 5) immediate. We note that this technique is used purely to specify the se-
mantics of clocks.

In essence, the technique uses constraints to implement a distributed stable counter
(henceforth: counter). A counter X is equipped with the following operations: (1) set
to zero, (2) split and (3) check if zero. A counter r can only be split if it is not zero;
two new counters are created and when both reach zero, r is set to zero. Once zero, the
counter stays at zero, hence the success of the check is stable. These operations may be
implemented with constraints as follows: A counter is represented by a variable X, it is
set to zero by asserting X=0, it is split by asserting X=Y+Z, where Y and Z are two new
variables, and it is checked by asking if X=0.

Clocks require a check for quiescence in each phase, hence we need a stream of
counters, a counter-stream.

12 Vijay Saraswat and Radha Jagadeesan

Formally, a constraint store σ is a set of constraints, equipped with a function var
which represents the set of variables over which the constraints are defined. If X does
not occur in σ, then we write σ + X to indicate a constraint store identical to σ except
that var(σ+X) = var(σ)∪{X}. The relevant constraints are:

(Term) t ::= X | 0 | t+t | t.cdr | t.car
(Constraint Store)σ ::= true | t = t | 0(t) | σ,σ

with the obvious entailment relation, augmented with the axioms: 0(X), X.car =
Z ` Z=0 and 0(X), X.cdr = Z ` 0(Z).

A clock-counter is a pair of terms 〈g, l〉, where g is the global counter-stream and
l the local counter-stream. We will arrange matters so that if the set of activities regis-
tered with a clock c is A1, . . . ,An, then each Ai has a clock-counter (g, li), and the store
has the constraint g.car= l1.car+ ...+ ln.car. When activity Ai performs
a resume it asserts the constraint li.car= 0. Ai can determine when all activities
have quiesced by checking g=0. It can move to the next phase by progressing with the
clock-counter (g.cdr, li.cdr). It can drop the counter by asserting 0(li). No
separate active representation of a clock is needed.

In Table 2, we present the formal rules capturing these ideas. We augment the state
of each activity with a clock map (henceforth: map) K (a finite partial function from
oids to clock-counters). We use ε to indicate the unique map with empty domain. If
K(c) = (x,y), we use Kg(c) for x and Kl(c) for y. We use |K| for the domain of K;
K[c 7→ Xc | φ] for K extended with the value Xc for each c satisfying φ (we drop K when
it is ε, the empty map); and K \ c for K with c removed from its domain.

In the rule for new clocks, we assume alpha renaming to ensure that x and g are new.
Note that for a newly created clock the global counter-stream is the same as the local
counter-stream, reflecting the fact that the clock has a single activity registered with it.
Clocks may be transmitted to new activities when they are created.

THEOREM 5 (CLOCK QUIESCENCE IS STABLE). Let configuration (H,σ,∆) be such
that σ ` X.car = 0 where X is the global counter-stream of a clock in the clock set of
some activity in ∆. Let (H,σ,∆)−→ (H ′,σ′,∆′). Then σ′ ` X.car= 0.

The only operations performed on the constraint store are Ask and Tell operations [27].
So, the theorem follows from the monotonicity of the constraint store.

3 Properties of X10 programs

3.1 Bisimulation

We define a notion of bisimulation and show that it is a congruence. Our study of bisim-
ulation focuses on issues relating to concurrency and shared memory. Thus, our treat-
ment does not validate enough equations in the sequential subset, eg. those relating to
garbage collection. However, even this weak notion of equality suffices to prove several
basic laws relating the new control constructs that we have discussed in this paper.

The transition system defined so far is for closed programs. In order to get a no-
tion of equality that is a congruence wrt shared memory concurrent programming, we

Concurrent Clustered Programming (Extended Abstract) 13

need to model the transition relation for open programs. We use a notion of an en-
vironment move to model update of shared heap by a concurrent activity. For a heap
H, an environment move λ = (o, f , p,o′) is the update of the field f in object o (if
it exists) to o′. Formally, if H(o) = (C,F), f ∈ dom(F) then, the resulting heap is
λH = H[o 7→ p : (C,F [f 7→ o′])]. This notion of environment move is stronger than
necessary, e.g. it does not respect the visibility constraints imposed by the underlying
OO paradigm.

DEFINITION 6. A binary relation ≡ on configurations is a bisimulation if the following
holds. If (H1,σ1,∆1)≡ (H2,σ2,∆2), then:

– H1 = H2, σ1 = σ2.
– For all environment moves λ = (o, f , p,o′), if (λH1,σ1,∆1) −→ (H ′

1,σ
′
1,∆

′
1), then

there exists (λH2,σ2,∆2)
?−→ (H ′

2,σ
′
2,∆

′
2) such that (H ′

1,σ
′
1,∆

′
1)≡ (H ′

2,σ
′
2,∆

′
2).

– For all environment moves λ = (o, f , p,o′), if (λH2,σ2,∆2) −→ (H ′
2,σ

′
2,∆

′
2), then

there exists (λH1,σ1,∆1)
?−→ (H ′

1,σ
′
1,∆

′
1) such that (H ′

2,σ
′
2,∆

′
2)≡ (H ′

1,σ
′
1∆′

1).

Let C[·] be an activity context with a statement hole. Two statements s1,s2 are
bisimilar, written s1 ≡ s2 if for all C[·] forall heaps H and forall σ , (H,σ,C[s1]) ≡
(H,σ,C[s2]). Similarly for two (promotable) expressions e1,e2, e1 ≡ e2 if for all C[·]
with expression holes, forall heaps H and forall σ, (H,σ,C[e1])≡ (H,σ,C[e2]).

The definition of ≡ quantifies over all sequential contexts. The use of environment
moves in Definition 6 enables us to prove a congruence property for all contexts includ-
ing tree contexts.

LEMMA 7. Let ∆[·] (resp. ∆′[·]) be a tree of open or closed activity contexts with a
statement (resp. expression) hole. Then, for all heaps H and forall σ, if s1 ≡ s2, then:
(H,σ,∆[s1])≡ (H,σ,∆[s2]) and (H,σ,∆′[e1])≡ (H,σ,∆′[e2]).

The following equations hold upto bisimulation.

when(c) when(d) s ≡ when(c&&d) s

atomic { s1; atomic s2} ≡ atomic {s1; s2}
async(P){s}; async(Q) {s1} ≡ async(Q){s1}; async(P){s}

async(P){async(Q){s} s1} ≡ async(Q[here/P]){s}; async(P) {s1}
finish{s; s1} ≡ finish{s}; finish{s1}

finish{when(c){s}} ≡ when(c){finish{s}}
finish async(p) {} ≡ {}

Additionally finish s is equal to s for s a next, resume or drop operation.

3.2 Monotonicity of places

As an application of bisimulation, we show that FX10 programs are insensitive to the
location of objects in the heap. For these programs, distribution may introduce effi-
ciency but does not affect correctness. Let SCoord = {here,here.next,here.next.next. . .}.
Let s be such that no transition sequence from ([],σ, p : ([],s, [])) leads to an error.

14 Vijay Saraswat and Radha Jagadeesan

LEMMA 8. Let Θ be an operator on the set SCoord. Let trans(Θ,s) be the result
of replacing every subexpression async(p) in s by async(Θ(e)). Then: ([],σ, p :
(s,([], [], [])))≡ ([],σ, p : (trans(Θ,s),([], [], []))).

When Θ is the constant function, we get a class of programs can be debugged and
developed in a one-place execution environment before being deployed in a multi-place
execution environment for efficiency.

3.3 Deadlock freedom

For any configuration, define a wait-for graph as follows. There is a node for each clock
and each activity that is suspended on a next; or a finish. There is an edge from
each clock to an activity registered on that clock that is suspended on a finish. There
is an edge from each activity suspended on a next to a clock the activity is registered on.
There is an edge from each activity suspended on a finishs to each activity spawned
by s that is suspended. A configuration is stuck iff it is terminal or there is a cycle in
the wait-for graph.

Clocks (without finish) are deadlock free, since no activity has an incoming edge
in this case. Deadlock-freedom holds for a larger language that encompasses lock-free
computations, CILK programs, systolic arrays and MPI computations.

THEOREM 9. There are no cycles in the wait-for graph for programs in the language
with atomic, clocks, and finish.

4 Conclusion and future research

We believe that X10 offers a simple, clean but real design for high-productivity, high-
performance concurrent programming for high-end computers.

However, these are just the first stages of X10 development. Considerable additional
work is needed to establish efficient compilers and multi-node virtual machines for
X10.

References

1. : CILK-5.3 reference manual. Technical report, Supercomputing Technologies Group (2000)
2. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In:

Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. (1994)
356–368

3. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfin-
ger, P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance java
dialect. Concurrency - Practice and Experience 10 (1998) 825–836

4. Numrich, R., Reid, J.: Co-array Fortran for parallel programming. Fortran Forum 17 (1998)
5. El-Ghazawi, T., Carlson, W., Draper, J.: UPC Language Specification v1.1.1. Technical

report, George Washington University (2003)
6. Carlson, W., El-Ghazawi, T., Numrich, B., Yelick, K.: Programming in the

Partitioned Global Address Space Model (2003) Presentation at SC 2003,
http://www.gwu.edu/ upc/tutorials.html.

Concurrent Clustered Programming (Extended Abstract) 15

7. : (Openmp specifications) www.openmp.org/specs.
8. Skjellum, A., Lusk, E., Gropp, W.: Using MPI: Portable Parallel Programming with the

Message Passing Iinterface. MIT Press (1999)
9. Gosling, J., Joy, W., Steele, G., Bracha, G.: The Java Language Specification. Addison

Wesley (2000)
10. Alexandrescu, A., Boehn, H., Henney, K., Lea, D., Pugh, B.: Memory model for multi-

threaded c++. Technical report, metalanguage.com (2004) JTC1/SC22/WG21 – C++, Doc-
ument Number: WG21/N1680=J16/04-0120.

11. Pugh, W.: Java Memory Model and Thread Specification Revision (2004) JSR 133,
http://www.jcp.org/en/jsr/detail?id=133.

12. Moreira, J.E., Midkiff, S.P., Gupta, M., Artigas, P.V., Snir, M., Lawrence, R.D.: Java pro-
gramming for high-performance numerical computing. IBM Systems Journal 39 (2000) 21–

13. Moreira, J., Midkiff, S., Gupta, M.: A comparison of three approaches to language, compiler,
and library support for multidimensional arrays in java computing. In: Proceedings of the
ACM Java Grande - ISCOPE 2001 Conference. (2001)

14. Flanagan, C., Freund, S.: Atomizer: A dynamically atomicity checker for multithreaded pro-
grams. In: Conference Record of POPL 04: The 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Venice, Italy, New York, NY (2004)

15. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA. (2003)
388–403

16. Harris, T., Herlihy, M., Marlow, S., Jones, S.P.: Composable memory transaction. In: SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. (2005)

17. Saraswat, V.: Report on the Experimental Language X10, v0.41. Technical report, IBM
Research (2005)

18. Charles, P., Grothoff, C., Donawa, C., Ebcioglu, K., Kielstra, A., von Praun, C., Saraswat, V.,
Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. Technical
report, IBM Research (2005) To appear in OOPSLA 2005 Onwards! Track Proceedings.

19. Hansen, P.B.: Structured multiprogramming. CACM 15 (1972)
20. Hoare, C.: Monitors: An operating system structuring concept. CACM 17 (1974) 549–557
21. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and

Systems 13 (1991) 124–149
22. Michael, M., Scott, M.: Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms. In: Proceedings of the 15th ACM Annual Symposium on Principles of
Distributed Computing. (1996) 267–275

23. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus for java
and gj. ACM Trans. Program. Lang. Syst. 23 (2001) 396–450

24. G.M. Bierman, M.J. Parkinson, Pitts, A.: MJ: An imperative core calculus for Java and Java
with effects. Technical Report 563, University of Cambridge Computer Laboratory (2004)

25. : (The java grande forum benchmark suite) www.epcc.ed.ac.uk/javagrande/javag.html.
26. Saraswat, V., Kahn, K., Shapiro, U., Weinbaum, D.: Detecting stable properties of networks

in concurrent logic programming languages. In: Seventh Annual ACM Symposium on Prin-
ciples of Distributed Computing. (1988) 210–222

27. Saraswat, V.: Concurrent Constraint Programming. Doctoral Dissertation Award and Logic
Programming. MIT Press (1993)

	Concurrent Clustered Programming (Extended Abstract)
	Vijay Saraswat cl@@auth and Radha Jagadeesan

