
Concurrent Constraint-based Memory Machines:

A framework for Java Memory Models

(Draft Preliminary Report, v 0.6)

Vijay Saraswat
IBM T.J. Watson Research Lab

PO Box 704
Yorktown Heights

NY 10598
(Please send comments to vijay@saraswat.org)

March 9, 2004

Abstract

A central problem in extending the von Neumann architecture to
petaflop computers with millions of hardware threads and with a shared
memory is defining the memory model [Lam79,AG95,APP99]. Such a
model must specify the behavior of concurrent (conditional) reads and
writes to the same memory locations. We present a simple, general frame-
work for the specification of memory models based on an abstract machine
that uses sets of (interdependent) order and value constraints to com-
municate between threads and main memory. The separation of order
constraints allows a parametric treatment of different order consistency
models such as sequential consistency, location consistency, happens-before
consistency (HB-consistency), etc. The use of value constraints allows a
simple formulation of the semantics of concurrent dependent reads and
writes in the presence of look-ahead and speculative computation. Mem-
ory is permitted to specify exactly those linkings (mappings from read
events to write events) which result in a unique solution for the con-
straints, and hence forces a unique patterns of bits to flow from write
events to read events.

We show that this single principle accounts for almost all the “causal-
ity test cases” proposed for the Java memory model. To fix ideas, we
present a structural operational semantics for a language using the HB
order model. This operational semantics may be extended to develop a
memory model for the Java programming language.

1

Contents

1 Introduction 4
1.1 Java Memory Model . 5

1.1.1 JMM requirements . 7
1.2 Some motivating examples . 7
1.3 Our proposal: Concurrent Constraint-based Memory Machines . 11
1.4 Examples revisited . 14
1.5 Comparison with related work . 15

1.5.1 Rest of this paper . 17

2 Concurrent Constraint-based Memory Machines 17
2.1 Constraint system . 18
2.2 Configuration . 21

2.2.1 Thread . 21
2.2.2 Store . 21

2.3 Transition . 24
2.3.1 Silent transitions . 24
2.3.2 Shared transitions . 24

2.4 Order Models . 26
2.4.1 The Sequential Consistency Model 27
2.4.2 The LC Order Model . 28
2.4.3 The HB Order Model . 29

2.5 Examples . 30
2.6 Properties satisfied by the LC model 31

3 Operational Semantics 33
3.1 Informal semantics . 35
3.2 Formalization of operational semantics 35
3.3 Expression, condition and location elaboration. 36
3.4 Rules for statements . 37
3.5 State transitions. 40

4 Conclusion and future work 40

A Test cases 45
A.1 Promotion of conditional events based on case analysis 45

A.1.1 Test 1 . 47
A.1.2 Test 6 . 49
A.1.3 Figure 15 . 50
A.1.4 Test 17 . 51
A.1.5 Test 18 . 52

A.2 Forward substitution . 53
A.2.1 Test 2 . 53
A.2.2 Test 3 . 54
A.2.3 Figure 2 . 55

2

A.3 Memory may perform arithmetic reasoning 56
A.3.1 Test 8 . 56
A.3.2 Test 9 . 57
A.3.3 Test 9a . 58

A.4 Unresolvable mutual dependencies 58
A.4.1 Test 4 . 59
A.4.2 Test 5 . 60
A.4.3 Test 10 . 61
A.4.4 Test 13 . 62
A.4.5 Figure 11 . 63
A.4.6 Figure 19 . 64

A.5 Array references . 65
A.5.1 Test 12 . 65

A.6 Statement Reordering . 67
A.6.1 Test 7 . 67
A.6.2 Test 11 . 68
A.6.3 Test 16 . 69
A.6.4 Figure 10 . 70

A.7 Volatile Reads . 71
A.7.1 Test 14 . 71
A.7.2 Test 15 . 73

3

1 Introduction

The evolution of programming languages has been marked by increasing so-
phistication in application models, in machine architecture and in programming
models (or abstract machines) that bridge the gap between the two.

For many years the von Neumann Sequential Imperative Programming Ma-
chine has defined an elegant and simple framework for computation. Abstractly,
a programmer could think of the state of the computation as a store (a mapping
from variables to values) together with instructions to extend the store (create
new variables) and modify the store. Programs could be understood in terms
of the effect they had on the store; operationally the result of executing a pro-
gram was to obtain a series of stores, each related to the previous through a
transition. Programs were designed so that the result of interest could be read
off from the final store in the sequence, i.e. on termination.

The central value of a programming model is that it provides a mutu-
ally convenient shared abstraction between the application developer and the
implementer (compiler-designer, operating system designer, hardware designer
. . . henceforth called system implementer). A properly designed programming
model successfully resolves the tension between the demands for simplicity and
generality arising from the application developer and the demands for simplicity
and efficiency arising from the system implementer. It provides for a decoupling
between the concerns of the developer (organizing of programming abstractions,
type systems, program transformations, reusable libraries, reasoning tools, se-
mantic models) and the system implementer (exploiting hardware and systems
technology to provide a cheaper/faster/smaller/scalable/more powerful/more
energy efficient implementation of the programming model). The system im-
plementer may cut whatever corners he wishes, use implementation techniques
limited only by Physics, his Imagination and the Golden Principle of Compilers:
Dont get caught. Dont violate the programming model.

We are at a crucial stage in the development of the von Neumann model.
The challenges thrown up by the demands for parallel excution have been around
since at least the 1970s. Leslie Lamport [Lam79] first identified a simple set of
rules (Sequential Consistency) which provide a programming model for machines
with multiple hardware threads that can access the store simultaneously. Intu-
itively, the model states that an ensemble of parallel programs may be thought
of as executing one step at a time. In each step, only one program may access
memory, completing its operation before allowing the system to take the next
step. In many ways this is a natural generalization of sequential execution to
an interleaving model of concurrency. A parallel computation may be thought
of as resulting in a sequence of states which is some interleaving of the sequence
of states of each of the parallel constituents.

However, as computer designers scale their systems to millions of hardware
threads directed at achieving petaflops of computational power, the cost of satis-
fying sequential consistency are becoming apparent. Parallelism in computation
creates a demand for parallelism in the access to memory. Fundamentally, at any
given instant such threads may have millions of memory operations outstanding,

4

in various stages of completion across intevening buses, bypass buffers, caches,
memory banks etc. If these operations access different regions of memory, no
changes to the programming model are needed because the Golden Principle is
not being violated. The difficulty arises when multiple threads wish to access
the same memory location at the same time. Therefore to properly account for
this phenomena, one is forced to abandon the interleaving model of concurrency
and move to a model where there may be simultaneous reads and writes to the
same memory location by multiple threads.

The memory model problem is thus the problem of defining the semantics
of concurrent reads and writes to shared memory locations. It must take into
account that a thread may submit a conditional write, specifying a condition
under which the write operation should be performed. The condition may arise
from speculative execution: statements under a conditional are being executed
speculatively without their condition being discharged. Or it may arise from
out of order execution: a statement after a conditional may be submitted ahead
of time under the assumption that the conditional will not succeed. The thread
may submit data-dependent writes, specifying the value to be written as a func-
tion of other values to be read. The thread may also submit ordering constraints
on events specifying, e.g. that a write must (appear to) execute before a read.

The job of the memory model then becomes the job of specifying which
of these reads can be answered by which of these writes (thereby determining
what value is returned by the read), while respecting the logical properties of
conditional execution and the ordering constraints between events.

We consider the development of a framework for solving the memory model
problem a central challenge in the further development of the von Neumann
model [AG95,APP99]. It is an important problem because resolving it suc-
cessfully will pave the way for the design of high-level imperative, concurrent
programming languages that can be implemented portably and efficiently on
state of the art multiprocessors. It is a problem large in scope: one is seeking a
complete revision of the foundations of imperative concurrency, which will end
up having an impact on denotational semantics, compiler transformations, proof
techniques, hardware implementation techniques, programming language design
etc. It is a hard problem: one seeks a uniform framework that is not sensitive to
the details of a particular consistency model, since there are a variety to choose
from.

1.1 Java Memory Model

The thorny nature of this challenge is highlighted by the issues in developing
the Java Memory Model (JMM). The 1996 First Edition of [GJSB00, Chapter
17] defined the semantics of threads in Java through an abstract machine.
Multiple threads communicate with each other through a shared main memory,
as depicted in Figure 1. Each thread maintains its own call stack, thread-local
variables and a working memory of objects in the main memory. It performs a
use operations to read the value of a working memory variable into the execution
engine, and an assign operation to write the value into working memory variable

5

from the execution engine. Main memory uses a read action to read the contents
of the master copy of a variable into a thread’s working memory. A thread
performs a load action to place the value read from main memory into working
memory. A thread performs a store action to transmit a value from working
memory to main memory. Main memory uses a write action to write this value
into the variable in main memory. Lock and unlock operations are performed
jointly by a thread and main memory.

Figure 1: A schematic abstraction for shared memory multi-processors

Rules are provided for the order in which events may occur. The basic inten-
tion appears to have been that correctly synchronized programs1 should appear
to execute in a sequentially consistent manner [Lam79,AG95]. However, as a
concession to then current multiprocessor architectures, the abstract machine
allowed prescient reads: a read operation on a variable may return a value that
is yet to be written to the variable, as long as synchronization conditions are
not violated. Unfortunately, this means that programs that are not correctly
synchronized may exhibit startlingly unexpected results. Therefore a cleanly
specified and understandable memory model became critical.

While [GJSB00, Chapter 17] appears to provide a solution for this problem,
it suffers from several major drawbacks. First, the set of rules specified are
quite complex and not at all well-motivated for programmers. In the terminol-
ogy introduced below, the specification is an “incomplete step semantics” (Sec-
tion 1.3). The consequences of these rules were not worked out. For instance,

1A correctly synchronized program has no data race. A program has a data race if there is
an execution sequence in which one thread is writing to a location and another reading/writing
to it without any mutual synchronization.

6

it was later discovered that these rules imply memory coherence (see [GS97],
[Pug04c]; informally, coherence is the property that all threads see operations
on a shared variable in the same order), a property which is known to require
significant overhead on shared memory multiprocessors. Second, the description
was confusing enough that several existing implementations were found not to
conform to the intended interpretation. Common compiler optimizations were
not valid for the intended semantics [Pug04c].

1.1.1 JMM requirements

Since then, a Java Specification Request [Pug04a] has been comissioned to spec-
ify a Java Memory Model (JMM). While many details are contentious, the fol-
lowing requirements on the model seem to be commonly accepted:2

M1: Programs that do not exhibit data races in sequentially consistent exe-
cutions must behave as if they are sequentially consistent. (“Correctly
synchronized programs cannot go wrong.”)

M2: Each read of a variable must see a value written by a write to that variable.
(“No thin air reads.”)

M3: The model must support efficient implementation on current multiproces-
sor architectures based on processors such as the PowerPC, IA64, IA32,
and SPARC.

M4: Removing useless synchronization should be semantically valid.

We propose some additional requirements:

M5: The model should be simple to understand for programmers. It should
be framed as an abstract machine, that is, in the form of configurations
and transitions over those configurations, in a manner familiar from oper-
ational semantics.

M6: The model should be generative. Given a program, it should be possible to
use the model to generate all possible execution sequences of the program.

From the semantics it should be possible to ascertain unambiguously
whether a proposed compiler optimization is in fact sound (preserves the
semantics of the program) or not.

1.2 Some motivating examples

The test cases discussed below are taken from [Pug04a]. Below we use the syntax
of a mini programming language described in Section 3. The details should be
familiar to most readers.

2The list below is our distillation of the requirements stated in [Pug01].

7

Figure 1 from [Pug04a]

Program Transformation

init A=0;
init B=0;
thread {
r2=A;
B=1;

} |
thread {
r1=B;
A=2;

}

init A=0;
init B=0;
thread {
B=1;
r2=A;

} |
thread {
A=2;
r1=B;

}

Behavior: r1==r2==1
Decision: ok.

Table 1: Statement reordering may cause unexpected interactions

Example 1.1 (Out of order writes) Consider the program in Table 1. It
is easy to see that a sequentially consistent execution cannot yield r2==2 and
r1==1.

Suppose we extend the model so that it may execute several instructions at
the same time, restricted only by the requirement that for local variables it must
always read the value that it last wrote into that variable. Now the machine
for Thread 1 may issue a read for variable A from memory, and without waiting
for it to complete, may go ahead and issue a write for variable B. Similarly the
machine for Thread 2 may issue the read for B and simultaneously the write for
A. The memory now sees these pair of “simultaneous” (i.e. unordered) requests
arriving from Thread 1 and Thread 2. Its job is to match up these requests,
responding to a read from a location with a value that was written into that
location. Now it is easy to see how the values r2==2 and r1==1 are generated.

Example 1.2 (Promoting conditional writes, Test 6) Consider Test 6 in
[Pug04b], reproduced in Table 2. A sequentially consistent execution must yield
0 for either r1 (Thread 1 goes first) or r2 (Thread 2 goes first). However, as
argued in Table 2, there is a plausible execution which can lead to the desired
result. It hinges crucially on the implementation being able to examine a set of
actions by Thread 1 and Thread 2 at the same time, and being able to reason
conditionally about the consequences of these actions.

Example 1.3 (No thin-air reads.) Consider Test 4 reproduced in Table 3.
Two threads are copying values from one variable to the other in parallel. The

8

Test 6 in [Pug04b]

Program

init x=0;
init y=0;
thread {
r1=x;
if (r1==1) {
y=1;

} |
thread {
r2=y;
if (r2==1) {

x=1;
}
if (r2==0) {

x=1;
}
}

Behavior: r1==r2==1
Decision: ok.

One may argue for this behavior as follows. Thread 1 communicates to main
memory an unconditional write r1=x, and a conditional write y=1 provided that
r1==1. At the same time, Thread 2 communicates an unconditional write of y
to r2, and a conditional write of 1 on x if r2 is 0 or 1. Now main memory may
choose to answer the read of x on line 1 by reading it from the write on line 6
if r2=1, and from the write on line 6 if r2=0. The read of y on Line 4 may
be answered by the write on Line 3 (if r1=1) and by the initial value otherwise.
Adding this linking to the constraints communicated from the threads results in
a single solution, namely 1 for r1 and r2.

Table 2: Speculative execution may cause unexpected interactions

9

Test 4 in [Pug04b]

Program

init x=0;
init y=0;
thread {
r1=x;
y=r1;
} |
thread {
r2=y;
x=r2;
}

Behavior: r1==r2==1
Decision: Forbidden.

It should not be possible for values to be generated from thin air even in the
presence of race conditions.

Table 3: Thin-air reads are not allowed.

variables are initialized to 0. Consider now that memory has simulatenously
received all four read/write events. It may satisfy the read for x from Thread 1
by answering it with the write for x by Thread 2, and the read for y in Thread
2 with the write in Thread 1. This imposes no conditions on what values are
transferred. So, theoretically, it might be possible to say that any value could
be transfered, e.g. 1. However, the semantics should not allow this.

No Optimization without Semantics. Before moving on to a discussion
of what such a model should look like, we wish to discuss another seemingly
plausible (but we think ultimately misleading) way to motivate an alternative
to sequential consistency, that appears to underlie the discussion on the Java
Memory Model mailing list.

One may observe that commonly compilers are free to reorder code as long as
they observe The Golden Principle (“Dont get caught”). Now for the program
in Table 1, the original code for Thread 1 is identical to the rewritten code for
Thread 1 as far as Sequential Execution semantics are concerned: they both
compute the same function from stores to stores. Thus the compiler should be
free to rewrite the code in the way shown in the table. The rewritten code, when
executed by a Sequentially Consistent Machine will show the given behavior.

10

There is a single global sequence of steps.
The reason we think this is a misleading way to define a programming model

is that unfortunately the range and nature of these compiler optimizations can-
not be fixed beforehand. Thus a programmer has no effective way of knowing
how a compiler might reorder code, and therefore how his program might be-
have. Second, this notion of a program model being defined in terms of “all legal
rewrites of the code” appears very unnatural and counter-intuitive to most pro-
grammers. We assert that programmers prefer a “machine oriented” view: a
view in which the rules for a machine executing the code are directly specified,
e.g. as transformations of machine configurations (in the usual way of oper-
ational semantics). Such an operational model should define the framework
within which the compiler-writer must operate. Clearly, this machine will be
more useful than the Sequentially Consistent Machine only if it permits more
of the aggressive “compiler optimizations” designed to improve performance.
Once the model is defined we can check that these compiler optimizatons are
valid, i.e. they preserve the semantics of the program. We prefer this approach
to the approach of taking the collection of desired optimizations to define the
semantics of the program, and summarize it with the slogan “No optimization
without semantics”.

1.3 Our proposal: Concurrent Constraint-based Memory
Machines

Instead of reasoning about possible compiler optimizations, we desire to formu-
late a family of simple shared memory abstract machines that can be used to
generate all possible behaviors of a given program. We call such an abstract
machine a concurrent constraint-based memory machine (CCM Machine).

The standard way to extend the Sequential Imperative Programming Model
to the current setting as follows. A configuration would be the state of the shared
main memory and the program being executed at each thread. In one step, a
thread executes an action, possibly updating memory, and determines the next
instruction for it to execute. Thus the steps taken by a parallel composition of
statements are obtained as an interleaving of the steps taken by each component
separately.

If each step must complete the action (and all its attendant updates to mem-
ory), then, as we have discussed above, this technique can only give rise to se-
quentially consistent execution sequences. Therefore to accomplish the task at
hand there are two basic choices.

Incomplete step semantics. The first choice is to permit a single step to
initiate an action but not complete it. For instance, an assignment step may be
modeled by adding events (corresponding to the reads and writes in the step)
to the store, without requiring that the effects of these events be reflected in the
new store. Over time, such a store would autonomously pick up “incomplete”
events, and add additional information (e.g. ordering information) to “link” it

11

into the rest of the store. Thus a step in the computation may be initiated by a
thread in the program or by memory, and a memory operation may take several
steps to complete.

Such an approach is feasible. Indeed this is the approach taken in [GJSB00,
Chapter 17] and by various papers on consistency models oriented towards archi-
tecture [GLL+90]. Unfortunately the book-keeping required to model memory
operations (particularly synchronization operations) in various stages of comple-
tion can be intricate. A lot of details about mechanisms needs to be formalized
– detail which is arguably at the wrong level of abstraction. Seemingly arbitrary
concrete decisions need to be made – discussions which arguably belong in an
implementation, not in semantics. The central task at hand is to give a simple
unambiguous account of the semantics of concurrent memory operations that
can be used as a compact between the programmer, the compiler writer and the
system architect, and these details are at the wrong level of abstraction.

Concurrent step semantics. Instead we turn to another approach, an
invariant-oriented approach. We model the store as a collection of events and
associated pieces of information that represents a set of completed memory op-
erations. As discussed earlier, to exploit the power of modern hardware, this
set should allow speculative execution, conditional look-ahead execution etc.
Such a store must be valid: it must satisfy a set of invariants arising from the
memory model we are trying to formalize. A transition takes a valid store to a
valid store. To correctly model concurrent operations on memory, a transition
must represent a set of memory operations (e.g. read, write, synchronize), pos-
sibly arising from different threads, that are to be thought of as executing “at
the same time”. The new store obtained on completion of the transition must
reflect the successful completion of all of these operations. In contrast with the
incomplete step semantics, such an approach does not allow for autonomous
memory transitions.

We shall call the set of events and associated pieces of information communi-
cated by one or more threads to memory an action set. (Detailed definitions are
given in Section 2.) As discussed earlier, an action set may specify an ordering
on events, conditional introduction of events, and dependent writes.

Given such an action set, what must memory do? First, it should add the
action set to the store. Second, it may need to add ordering information between
events in the action set, arising from different threads, so that the invariants
associated with a valid store may be satisfied. For instance, if the action set
contains two lock events from different threads targeted at the same location,
it must ensure that these events are ordered. It may also need to add ordering
information between events in the old store and events in the new store (e.g.
to record that the events in the action set occur after the events in the store,
which represents a record of past events). Third, it must find a linking, which
matches each read event in the input action set to a write event on the same
location. The write event may already have occurred in the past (i.e. may be in
the store) or may be supplied in the input action set. Crucially, the write event

12

must be visible to the read event according to the ordering rule between different
events specified by the memory model. Further, the linking must unambiguously
specify the value (i.e. pattern of bits) that is read from a write event. Thus
in the new store every read will have been satisfied by a write on the same
location that is visible to the read, and all necessary ordering relations between
synchronization events will have been established.

Let us make explicit certain operations that memory must not do. It must
not add ordering information between events in the action set supplied by the
same thread (either now or in the past); such information can only be supplied
by the thread. It must not add ordering information between events that have
already occurred in the past; for that would be tantamount to changing the past.
Note also that most operations are targeted at a single memory location (e.g.
reads and writes, but not fences) and to implement them ememory should only
add ordering information between events targeted to that location. Finally,
memory should not introduce “magic writes” – i.e. answer reads by pulling
values (patterns of bits) out of thin air. It must merely link reads to reads, not
create values.

This should complete one basic step of execution. Execution should begin
in an “empty store” (reflecting no past interactions), and proceed by accepting
an action set from threads, computing the new store and repeating until done.

Constraints. The central question that remains is how these action sets are
to be specified. Since stores are just an “integral” of action sets over time, this
will also determine how stores are specified.

We shall use the technique of constraints to specify the linkages between
reads and writes. The use of constraints for communication and control in con-
current programming was discussed at length in [Sar93] (see specifically Section
1.4.2). Constraints allow the partial specification of information (e.g. the linkage
between reads and writes, without requiring that the value be known). Con-
straint imposition is commutative, associative and idempotent (i.e. the order
of constraint imposition is irrelevant). Because of this, constraints support con-
currency: they may simultaneously (and asynchronously) be added to a shared
store by multiple threads. Constraints are additive – a collection of constraints
may imply more than what is implied by each one separately. Constraints are
declarative – the notion of a solution of a constraint (and of one constraint en-
tailing another) can be understood purely in logical terms, independently of the
details of algorithmic manipulation performed by the constraint solver.

Thus, we shall take an action set (and hence the store) to be a constraint.
We shall require the invariant that the store uniquely specify the value of all
read and write operations; that is, it has a unique solution for program variables.
Additional invariants are associated with the particular choice of Order Model
(see below). Typically, all Order Models require that the the ordering on events
be acyclic, and that all events targeted at a particular location by a particular
thread are totally ordered.

13

Order models. Our approach is parameteric on the order relation between
events, and the closely related notion of write-visibility (which writes can be
seen by which reads, based on the order relation). Given a particular choice of
order, we shall obtain a specific CCM Machine.

We identify several machines of interest. The Sequential Consistency (SC)
Machine establishes the requirement that all events in an action set arising from
a single thread are totally ordered, and that all events in a store are totally
ordered. Given input action sets from multiple threads and a store, the only
work that needs to be done to obtain the new store is to embed the set of total
orders (one for each thread) into a single total order, i.e. to interleave the events
from each thread.

The Location Consistency (LC) Machine is based on the very weak notion
of location consistency of Gao and Sarkar [GS00]. In such a machine two data
accesses (non-synchronization accesses) are considered to be ordered only if they
are made by the same thread to the same variable.

The Happens Before (HB) Machine is based on the happens before relation,
particularly as developed in [Pug04a], which specifies a total order on all events
emanating from a thread, and an edge between a synchronized read event and
a write event that answers it.

We show that the LC and HB machines agree on the results of the Test Cases
posed in [Pug04b]. We discuss some desirable properties that are satisfied by
these machines in Section 2.6.

Other Machines are possible, particularly those based on processor consis-
tency, weak consistency and release consistency. Out of considerations of space
a detailed development of these machines and their properties is reserved for
future work.

1.4 Examples revisited

Consider the examples discussed earlier in the context of the LC machine. For
the sake of simplicity, we elide the description of the underlying events, and
their ordering relations, and rely on the naming convention of the variables to
match them up to the underlying events. (A more detailed example is presented
in Section 2.5.)

Example 1.4 (Table 1) The first thread sends two write events and a read
event, with the associated constraints w(R2)=r(A1r), w(B1w)=1. These con-
straints may be read as saying that the value written into the register R2 is the
value read by Thread 1 from location A, and the value written into location B
by Thread 1 is 1.

The second thread similarly sends w(R1)=r(B2r), w(A2w)=2.
Now main memory can choose to answer each read from the correspond-

ing write received from the other thread, through the linking r(A1r)=w(A2w),
r(B2r)=w(B1w). This estabishes r(R1)=2, r(R2)=1.

The next example shows that memory can respond to conditional writes by
making conditional linkages.

14

Example 1.5 (Test 6) Thread 1 can be seen as communicating

w(R1w)=r(X1r), (r(R1r)=1 -> w(Y1w)=1)

and Thread 2 can be seen as communicating

w(R2w)=r(Y2r), (r(R2r)=1 -> w(X2w1)=1), (r(R2r)=0 -> w(X2w2)=1)

Given these action sets the store can establish the linking

r(X1r)=(r(R2r)=1)?w(X2w1):((r(R2r)=0)?w(X2w2):w(Xi)),
r(Y2r)=(r(R1r)=1)?w(Y1w):w(Yi),
r(R1r)=w(R1w),
r(R2r)=w(R2w),

This linking states that X1r should receive the value from X2w1 if that write
action executes successfully, and if not, from X2w2 (if that action suceeds), and if
not, from Xi. Similarly for Y2r. This linking together with the other constraints
establishes r(R2r)=1 and r(R1r)=1. No other solutions are possible.

Example 1.6 (Test 4) The two threads may be seen to communicate

w(R1w) = r(X1r), w(Y1w) = r(R1r)

and
w(R2w) = r(Y2r), w(X2w) = r(R2r)

respectively. However, no linkage can be used to establish the desired result.
Consider for example the linkage

r(X1r)=w(X2w),r(Y2r)=w(Y1w)}
r(R1r)=w(R1w), r(R2r)=w(R2w)

This succeeds in establishing r(R1r)=r(R2r) (all the variables are equated to
each other). But this is vacuous – every valuation is a solution. Hence this
linkage must be rejected.

1.5 Comparison with related work

The use of constraints distinguishes our approach from the models of Man-
son/Pugh [MP04] and Sarita Adve [Adv04]. We believe that ideas in this paper
can be used to considerably simplify their models.

At a high-level, both proposals are motivated by the desire to specify a se-
mantics which will permit “reasonable compiler transformations”. They choose
to tackle the problem of out-of-order writes by requiring that a proposed exe-
cution trace be given first. (For example the proposed trace may contain out of
order executions of program statements.) This trace is then examined for out

15

of order writes and explicit additional conditions on traces are given to permit
certain kinds of writes and rule out others.

For instance, the Manson/Pugh model requires that there be a total order
over actions called a justification order. The value returned by a read on a
location must be the value written into that location by a prior write event (in
the justification order). The conditions on justification orders require another
complex notion, i.e. the set of forbidden prefixes. Adve’s proposal (the SC-
model) requires that the out of order writes be justified by another execution
of the system which must be “similar” to the current execution in many ways
but which should have enough information content to justify the out of order
writes.

We believe that the details of these two models are very brittle: seemingly
simple variations in the definitions can lead to different results. These ideas
appear to be in need of some underlying systematic theory.

In contrast, we believe that constraint-based communication, with the
Unique Solutions Criterion, offers a simple, operationally-motivated approach
that will appeal to programmers. Both the Manson/Pugh model and the Adve
model are built on the happens before relation and thus may be fruitfully com-
pared to the HB Machine. A more detailed technical comparison between our
approach and these models must await completion of the technical description
of these models (which are still being worked on by their authors).

We believe that an attraction of our conceptual framework is that it places
LC and HB on the same footing, making their differences and similarities quite
clear.

CRF. Arvind and his colleagues have developed a mechanism-oriented mem-
ory model, the “Commit-Reconcile and Fence” approach, designed for architects
and compiler writers [SAR99,MAS00]. CRF provides a small language (whose
semantics is defined using term-rewriting) into which higher-level parallel lan-
guages are intended to be translated. CRF exposes both data replication and
instruction reordering. CRF commits to memory coherence. The semantics of
Java’s synchronization constructs is described by translation into CRF.

The CRF approach is similar in spirit to an incomplete step operational
semantics discussed in Section 1.3. We believe that it will be very useful to
develop a relationship between such an incomplete-step abstract machine and
the invariant-oriented abstract machines discussed in this paper. We believe our
use of constraints rather than term-rewriting significantly simplifies the technical
development. We look forward to a more detailed technical comparison between
the two approaches in future work.

Uniform Memory Model. [YGL04] presents an approach to defining mem-
ory models using an abstract machine coupled with a transition table for exe-
cuting instructions. A local instruction buffer at each thread to is used to store
pending instructions in “program order”. The specification of memory system
is defined in terms of a transition system specified using guarded commands.

16

Entries in a bypass table govern instruction reordering at runtime.
This approach also appears to correspond to an incomplete step semantics.

Data structures are explicitly maintained and modified by the operation of the
abstract machine.

We believe that our formalization in terms of memory as a store of con-
straints permits a simpler and more elegant treatement of similar intuitions.
Our approach permits multiple memory instructions to be executed in “one
step”, thus obtaining the effect of instruction reordering.

1.5.1 Rest of this paper

We discuss the design of the Concurrent Constraint-based Memory Machine
framework in detail. We instantiate the framework with the LC and HB partial
orders to obtain two concrete machines. We discuss properties of these ma-
chines. We outline the results obtained with these models for all the test cases
of [Pug04b]. We discuss future work.

The presentation in this paper is deliberately informal but rigorous for the
most part. The reader wishing to get a basic understanding of this approach
should read Section 2 and Appendix A and examine the test cases in detail.
The theoretician interested in how action sets get generated from the source
program may wish to look at the operational semantics in Section 3.

This is a preliminary draft paper. The full version of this paper will contain
statement and proofs of theorems framing key properties of these machines.

2 Concurrent Constraint-based Memory Ma-
chines

This section describes the CCM Machine framework in detail. Using the material
in this section, Section 3 presents a structural operational semantics for a mini-
language sufficient to describe the examples in [Pug04a].

We note that this description is intended for specification purposes only.
There is no requirement that an actual implementation behave in this way;
only that all the behaviors that it generates must be understandable in terms
of the operation of such an abstract machine.

Indeed, there is no requirement even that the steps in one execution of the
machine must all be taken in hardware or performed at run-time. A compiler
is free to perform whatever transformations on the input program it wishes as
long as it does not violate the Golden Principle.

Another obvious point worth reiterating is that the abstract machine de-
scribes all possible behaviors. A concrete implementation is interested only in
realizing one particular behavior and will thus usually make additional imple-
mentational commitments.

In particular we do not anticipate that any realistic implementation of CCM

17

machines will perform any kind of constraint-based reasoning at run-time.3 CCM
Machines are intended to be used as an abstract model of computation that
describes what is accomplished by current hardware designs.

2.1 Constraint system

We describe a constraint system [Sar93,Sar92] that can be used to formalize most
of the structure needed for [Pug04a]. This constraint system may be extended
in a fairly routine way to accomodate more events, as necessary, for instance,
to accomodate more concurrent constructs (e.g. atomic sections, fences etc). It
may help the reader to think that the constraint system formalizes that part
of the semantics of the Java Virtual Machine that corresponds to interaction
between threads and main memory. Section 3 describes a framework for opera-
tional semantics for a small programming language, using the constraint system
discussed in this section.

We assume some underlying undefined (infinite) sets of threads T, locations
L and events E. T has no special structure other than a special constant 0 ∈ T
which interpretes the literal 0 that is used as the designation of the “main”
thread (see Section 3).

All locations are thought of as existing in shared memory, even those ac-
cessed only by a single thread. Locations may be structured. A location may
correspond to an object and may have fields (which are other locations). An
object value is represented by a literal {f1 = k1, . . . , fn = kn} which should be
thought of as saying that field fi of the object has the value ki (see Table 5).
A location may correspond to an array, whose elements (corresponding to other
locations) are accessed through an index. L is classified into normal or volatile
locations by the predicates n() and v().

We assume that the constraint system respects the natural properties for
arrays and objects, namely:

X = {f1 = e1, . . . , fk = en}.fi ` X = ei (1)
X = [e1, . . . , ek][i] ` X = ei (2)

E has a strict partial order (i.e. a binary relation that is transitive, asym-
metric and irreflexive) which is the interpretation of the predicate � . Each
event is associated with exactly one thread T and may be associated with zero
or more locations. E supports the following kinds of events:

read such events E satisfy r(E, T, L). The value returned by the read may be
accessed through the term r(E).

write such events E satisfy w(E, T, L). The value written into the location
may be accessed through the term w(E).

3Note, however, that in the future work section we describe some extensions to the un-
derlying programming language that can fruitfully exploit the architecture of CCM Machines.
Such extensions may well require some representation of run-time constraint-solving.

18

(Literals) k ::= 0 | 1 | . . . (Integer literal)
null (Null reference)
{f=k, ..., f=k} (Object literal)
[k, ...,k] (Array literal)

(Event Constraints) n ::= r(X,T,L) (Read)
w(X,T,L) (Write)
l(X,T,L) (Lock)
u(X,T,L) (Unlock)
o(X,T) (Object creation)
a(X,T) (Array creation)
i(X,T) (Thread Create)
x(X,T) (Thread Destroy)

(Ordering Constraints) o ::= E� E
(Read Terms) r ::= r(E)

k (Literals)
r + r | r× r | . . . (Arithmetic terms)

(Write Terms) w ::= w(E) | d?w:w
(Write Constraints) q ::= w(E)=r
(Linking Constraints) l ::= r(E)=w
(Pending Conditions) d ::= r > r | r < r

r!=r | . . . (Comparisons)
!(d) (Negation)
d&& d (Conjunction)
d || d (Disjunction)

(Loc Constraints) x ::= n(L) (Normal Location)
v(L) (Volatile Location)
l(E)=l(E) (Location Equality)

(Action set) a ::= x | n | o
q | z,z
d → a (Conditional)

(Store) s,z ::= x | n | o
l | q
d
d → s (Conditional)
z,z (Conjunction)

(Field Selector) f ::= 〈ident〉
(Event Vars) X,E ::= 〈ident〉
(Thread Vars) T ::= 0 | 〈ident〉
(Locations) l ::= 〈ident〉 (Static location)

r(E) (Dynamic location)
l.f (Object field)
l[r] (Array location)

Table 4: The constraint system CJ for Java

19

lock such events E satisfy l(E, T, L). There is no value associated with this
event.

unlock such events E satisfy u(E, T, L). There is no value associated with this
event.

array creation such events E satisfy a(E, T). The array created by this event
may be accessed through the term r(E).

object creation such events E satisfy o(E, T). The object created by this
event may be accessed through the term r(E).

thread creation such events E satisfy i(E, T). There is no value associated
with this event. T should be a new variable, and may now be used as a
Thread Var.

thread destruction such events E satisfy x(E, T). There is no value associ-
ated with this event. There should be no further events (in the ordering)
generated by thread T .

For each event E, the associated thread may be accessed through the term
t(E), and the associated location, if any, through the term l(E). All the classi-
fiers r(E, T, L), w(E, T, L), . . . enumerated above classify disjoint sets of events.
Thus, for example, the conjunction of assertions w(E, T, L), r(E, T ′, L′) is incon-
sistent, the conjunction of assertions w(E, T1, L1), w(E, T2, L2) implies T1 = T2

and L1 = L2 etc.
An event associated with thread T and a single location L is said to be tar-

geted at the memory line m(T,L). Some events (e.g. lock and unlock on normal
variables, reads and writes on volatile variables) are considered synchronization
events (and are treated specially by the underlying Order Model).

The set of terms r(E) for E a read event, closed up under the given primitive
operations, is called the set of read terms. We shall often say that r(E) is a read
variable and w(E) is a write variable and call such variables program variables.

Arithmetic operators are interpreted in the standard way. The interpreta-
tion of equality is also standard. The conditional expression is used to model
conditional assigments. The expression d ? t1 : t2 stands for the expression t1 if
d has the value true and for t2 otherwise.

Logical connectives are interpreted as in standard classical logic. One may
give a semantics to constraints in terms of sets of valuations that realize the
constraint.

Definition 2.1 (Valuation, Satisfaction) A valuation is a mapping of vari-
ables to values in the underlying domain of interpretation (i.e. E for events, L
for locations, the integers for integer program variables etc). A valuation realizes
a constraint if the constraint is true under this mapping. A set of constraints s
entails a constraint d, written s ` d, if every valuation that realizes s realizes d.

An inconsistent constraint is one which cannot be realized by any valuation. As
is standard in logic, an inconsistent constraint entails every constraint.

20

2.2 Configuration

The state of a CM machine is defined by k ≥ 0 threads, and a store.

2.2.1 Thread

A thread contains all the private state necessary to execute a thread of control.
In particular it has space for private local variables and for a stack. We assume
that a thread is capable of performing arithmetic operations, branching, method
invocations etc, much as a thread of the current Java Virtual Machine (JVM).

The thread communicates with the shared store through a collection of reads
and (conditional) write operations, via an action set as described below. Con-
ceptually, the result of communicating an action set to memory is that the store
is changed (because writes are committed), and values are obtained (through
read operations) into private variables local to the thread. Based on these val-
ues, the thread may perform certain expression evaluations, decide the value of
predicates, take some branches, throw an exception, invoke a method etc. Sub-
sequently it may again interact with memory by communicating another action
set, wait for (some or all of) the results before continuing etc.

We will distinguish a set of variables used in an action set for communication
between thread and main memory. These variables are single-assignment vari-
ables (sometimes called logical variables). These variables will be created in the
private store of a thread but references to them may be passed to main mem-
ory. As we shall see below, main memory will assign values to these variables
by imposing constraints on them which reflect how read events are matched to
write events. These values are communicated to the thread and used by it to
direct its operations. In what follows, we shall use the term variable for logical
variables, and use the term locations for normal (Java) program variables.

In addition to this, a thread may have several assignable registers for its own
internal book-keeping. These do not participate in communications with main
memory and are hence not relevant to our model.

Strictly speaking the CCM Machine framework does not require that a thread
be implemented sequentially, and hence the activity of communicating with the
store be sequenced with the activity of making local decisions. Indeed a thread
may be implemented as a collection of much finer-grained activities, some of
which are responsible for manipulating the stack, some for communicating with
main memory etc. But all these are issues of implementation. Here we are
concerned with describing the overall logical picture.

2.2.2 Store

The set of events defined by a particular CM Machine depends on the underlying
Order Model (Section 2.4).

Definition 2.2 (Action set) An action set is a set a of constraints in the
constraint system of Table 4 satisfying the Ordering Invariants for action sets
of the underlying Order Model.

21

Store. A store is an action set with additional linking constraints. Before
defining these constraints, we need to introduce the notion of a write term.

Given that an action set may contain conditional writes, it must be possible
for the memory to specify a linking between reads and writes that is also condi-
tional. For instance, suppose the store contains two write events for a location
x, with associated write variables Y and Z. Suppose the first is a conditional
write, with constraint c. Then it should be possible for the store to specify that
a read should be answered from location Y if the condition c is true, and from
location Z otherwise. This motivates the following definition.

Definition 2.3 (Write term) A write term for location L is the term w(E)
for any event E on location L or the term d ? w1 : w2, where d is a pending
condition and w1, w2 are write terms for location L.

Definition 2.4 (Store) A store is a set of constraints containing an action set
and linking constraints, which are of the form r(E) = w for a read event E for
location L and a write term w for L.

A linking constraint is added to the store by Main Memory after it has made
a particular choice of write events to use to respond to a read. Typically a linking
constraint relates a read variable to a single write variable (thus establishing a
direct linking).

Since we allow conditional events, we must have a way of determining when
an event is active. Intuitively, an event is active if its associated condition (if
any) is satisfied.

Definition 2.5 (Active event) We say that a read event E is active in a store
s if s ` r(E, T, L) for some T,L. Similarly for write events.

By the remark above, every event is active in an inconsistent store.

Definition 2.6 (Extension of a store) An extension of a store s is any set
augmenting s with equations of the form r(E) = k, for k a literal. An extension
is total if it forces every active read event to have a unique value.

Example 2.1 Let s be the set of constraints:

{ w(Ix,0, x), w(Ix) = 0, r(X1r, 1, x), Ix � X1r,
r(X1r) > 0 → (w(Y 1w, 1, y), w(Y 1w) = 1, X1r � Y 1w)
r(X1r) ≤ 0 → (w(Y 1w1, 1, y), w(Y 1w1) = 0, X1r � Y 1w1)}

Intuitively it represents the events generated by the program:

init x=0;
if (x>0) {
y=1;
}
if (x=<0) {
y=0;
}

22

The event Y 1w is not active in s because s does not entail w(Y 1w, 1, y). How-
ever, the extension s′ = s ∪ {r(X1r) = 1} of s does entail w(Y 1w, 1, y) (as
can be established through standard logical reasoning). But s′ does not entail
w(Y 1w1, 1, y).

For any store s, let o(s) be the set of all event constraints and order con-
straints entailed by s. We can use the underlying Order Model to answer ques-
tions about visibility of a write event at a read event in o(s). However, we must
deal with conditional events, and hence need to extend the notion of visibility
to write terms.

Definition 2.7 (Visibility of a write term) Given a store s, a read event E
and write term w for location L, w is said to be visible to E

• if w ≡ w(E′), and for every consistent extension s′ of s, E′ is visible to E
in o(s′) (according to the underlying Order Model).

• if w ≡ d ? w1 : w2, and w1 is visible to E in every consistent extension of
s that entails d and w2 is visible to E in every consistent extension of s
that entails !(d).

We say that a set of linkings l is valid in a store s if for every link r(E) =
w ∈ l, w is visible to E in s.

Proposition 2.1 Let s be a store and l a set of linkings valid in s. Then l is
valid in s ∪ l.

Let r(E) = w ∈ l. We have to show that w is visible to E in s∪l. Let w ≡ w(E′).
Let s′ be an extension of s ∪ l. Then there must be an extension s′′ of s such
that o(s′) = o(s′′). But w(E′) is visible to E in o(s′). Hence it is visible to E in
o(s′′). It follows that w(E′) is visible to E in s ∪ l. A similar argument works
in the other case.

The definition above has been chosen carefully. As we see below (Defini-
tion 2.10), memory is required to add linkings that are valid in the union of the
store and action set (together with forced synchronization and ordering con-
straints). This condition ensures that each constraint r(E)=w will link E to a
write event which is visible to it, regardless of other linkings introduced for other
events. Section A.5.1 discusses a situation in which a linking valid in the new
store is in fact not valid in the union of the store and the action set, and is
hence ruled out by Definition 2.10, as desired.

Definition 2.8 (Events associated with a store) Let s be a store. The set
e(s) of events associated with s is defined as the set of all events E such that
some consistent extension of s entails an event constraint for E.

Example 2.2 For the store s of Example 2.1, e(s) = {Ix,X1r, Y 1, Y 1w}.

23

Definition 2.9 (Valid store) A store s is said to be valid if

1. the store satisfies the Ordering Invariant for stores of the underlying Order
Model,

2. every linking in s is valid in s, and

3. s forces r(E) to have a unique value for every active read event E in s
(Unique Solution Criterion).

4. if s ` w(E) = r and some read term r(E) occurs in r, then s ` r(E, T, L)
for some T,L (Read Closure).

5. for every condition d and event n, if s ` d → n then for every term r(E)
occurring in d and every event E′ in n, s ` E � E′.

Recall that every inconsistent store satisfied every valuation. Therefore for
non-empty valid stores (with at least one program variable), the Unique Solution
Criterion requires that the order constraints in s are satisfiable, i.e. there are
no cycles etc.

Proposition 2.2 (Empty store) The empty set is a valid store.

Execution of a CCM Machine begins in the empty store.

2.3 Transition

In this section, we informally review the transitions made by a CCM machine.
Appendix 3 provides an operational semantics that formalizes these ideas.

The CM Machine moves from one state to another as the result of two kinds
of moves.

2.3.1 Silent transitions

Based on its control state, and data received into private (logical) variables from
the shared memory, a thread may make a private transition (affecting only its
local state) to another state. For instance it may perform arithmetic operations,
take a branch, thrown an exception, allocate a new object on the heap etc. This
change of state is entirely unobservable by the shared store or by any other
thread.

2.3.2 Shared transitions

The LC machine may also make a step based on a simultaneous interaction
between k ≥ 1 threads and the store s.

In such a step, each thread Ti participating in that step communicates an
action set Si to the store obtained from the next set of statements to be executed

24

by the thread. The size of the action set is entirely up to the thread. The action
set may contain a single read event or a single write event or dozens of such
events. Roughly speaking, the size of this set is correlated to the amount of
prescient computation permitted by the thread.

Similarly it is not necessary that more than one thread participate in a shared
transition; it is merely permitted for them to do so. Indeed a system execution
in which only one thread participates in a shared transition, and performs only
one event per transition is completely legal and corresponds to a sequentially
consistent execution of the program.

We now define how to obtain in one step a new store from an existing store
and an input action set.

Definition 2.10 (New store) Assume a fixed underlying Order Model O. Let
s be a valid store (for O) and z an action set such that e(s) and e(z) are disjoint.
We say that s′ is a new store for s on input a (for Order Model O) and write
s, a �O s′ provided that s′ = s ∪ a ∪ oh ∪ oi ∪ l is a valid store (for O) where:

1. oh is a set of constraints E1 � E2 where E1 ∈ e(s) and E2 ∈ e(a) are
defined on the same thread (sequencing constraints),

2. oi is a set of constraints E1 � E2 for E1, E2 synchronization events in
e(a) on different threads, (synchronization constraints)

3. l is a valid linking in s ∪ a ∪ oh ∪ oi (linking constraints).

Above, the sets oh and oi should be chosen to be minimal, that is, they should
add only those order relations that need to be added in order to obtain a valid
store. (That is, we require that there be no subsets o′h of oh and o′i of oi such
that s ∪ a ∪ o′h ∪ o′i ∪ l satisfies all the conditions above.)

We say s −→ s′ if there is some action set a such that s, z � s′.

For the three kinds of machines we consider oh is determined uniquely by s
and z – there is no choice. The synchronization constraints capture ordering
constraints introduced to resolve competing synchronized accesses to shared
variables; as such there can be zero, one or more choices of oi for a given s, a
and oh.4

With s, a, oh, oi fixed, there may still be many choices of linkings l – but only
if there are data races. See Section 2.6 where we argue informally that if there
are no data races then in fact the choice of linking is forced and corresponds to
what would be returned by a sequentially consistent execution respecting the
given order constraints.

These values are communicated to the appropriate threads, which may now
resume execution, and repeat the cycle.

This concludes a description of the action of the basic abstract machine.
4There may be zero choices if a offers events that cannot be performed in the current

state, e.g. a thread T may offer a lock operation on a variable x, but in s the lock is held
by some other thread T ′ and a does not contain an unlock event on m(T, x). It is up to the
underlying Order Model to specify conditions on input action sets such that if these conditions
are satisfied then it is always possible to obtain a new store from the current store.

25

Propositions. The following propositions are true for all CCMs.

Proposition 2.3 (Accumulativity of store) Suppose s, s′ are valid stores
such that s −→ s′. Then s′ ` s.

Thus the store is accumulative. That is, given an execution sequence s0 −→
s1 . . . −→ sn, we have sn ` si for all i.

Proposition 2.4 (Conservativity of order relations.) Suppose s, s′ are
valid stores such that s −→ s′. Then s′ ` E � E′ for E,E′ ∈ e(s) iff
s ` E � E′.

The proposition says that the new store is conservative over old order relations:
it induces no new order relation between old event variables. This follows from
the fact that the new order relations in s′ relate to the new events in s′ (oi) or
relate an old event to a new event (oh). But these cannot cause a new order
relation to be induced on the old variables. Finally, because of USC all the
conditions in s are discharged so there is no possibility of new information on
program variables (as could potentially be induced by the new linking) discharg-
ing an old conditional, thereby establishing a new order relation between old
variables.

Proposition 2.5 (Conservativity of linkings.) Suppose l is a valid linking
in s and s −→ s′. Then l is a valid linking in s′.

This follows from Proposition 2.4. The new information cannot add any new
order relation on old variables, hence cannot affect the visibility of write terms
to read events.

At each step, the store resolves enough of the non-determinism in the events
offered by participating threads to determine the order of synchronization op-
erations, and specify the precise value returned by each read operation.

2.4 Order Models

We now turn to defining a few representative order models. Each of these order
models O gives rise to a specific abstract machine CCM(O).

The following definitions will be useful below.

Definition 2.11 (Event(L), etc.) Let L be any location and T any thread.
We define the following sets:

• Event(L) is the set of all event constraints on L.

• Synch(L) is the set of all synchronization event constraints on L.

• Thread(T) is the set of all event constraints whose thread is T .

• m(T,L) is the set of all event constraints whose thread is T and location
is L. Note that m(T,L) = Thread(T) ∩ Event(L).

26

Let s be a set constraints, and O a set of event constraints. Then the
restriction of s to O, written s ↓ O is defined to be the set

(s ∩O) ∪ {s ` E � E′ | E,E′ ∈ s ∩O}

Definition 2.12 (Totally ordered) Let s be a store. s is said to be totally
ordered if for every consistent total extension s′ of s, and every pair of events
E,E′ ∈ e(s′) either s′ ` E � E′ or s′ ` E′ � E.

(See Definition 2.6.)

Definition 2.13 (Lock condition for action sets) An action set s satisfies
the lock condition for a location L if for all threads T , and extensions s′ of s,
o(s′) ↓ (Synch(L)∩Thread(T)) is a total order in which every lock (unlock) event
is followed (if at all) by an unlock (lock) event E′, and for every lock event E
followed by an unlock event E′, t(E) = t(E′).

Definition 2.14 (Lock condition for stores) A valid store s satisfies the
lock condition for a location L if o(s) ↓ Synch(L) is a total order, whose minimal
event (if any) is a lock event, and in which every lock (unlock) event is followed
(if at all) by an unlock (lock) event E′, and for every lock event E followed by
an unlock event E′, t(E) = t(E′).

Definition 2.15 (Proper Initialization) A valid store s is said to be properly
initialized if for every location L such that s entails an event constraint on L,
s entails a minimal event constraint on L, and this event constraint is a write
event.

2.4.1 The Sequential Consistency Model

Definition 2.16 (Ordering Invariant for Action sets) An action set s
must satisfy the conditions:

SC-A1: for all threads T and total extensions s′ of s, s′ ↓ Thread(T) is totally
ordered, and,

SC-A2: the lock condition for action sets for all normal locations L.

Definition 2.17 (Ordering Invariant for Stores) A store s must satisfy
the conditions:

SC-S1: it is totally ordered,

27

SC-S2: it satisfies the locking condition for all normal locations, and,

SC-S3: it is properly initialized.

No conditions are necessary for volatile variables. Given a store s, we say that
thread T holds the lock on location L if the maximal event in s ↓ Synch(L) is a
lock event with thread index T .

For SC, write visibility can be defined directly: a read event sees only the
last write event on that location. However, we take this opportunity to present
a much more general definition, which will work for other order models as well.

Definition 2.18 (Write visibility) In a store s, each read event r on a line
m(l, t) can see a write event w on a line m(l, t′) (t may or may not equal t′) if
w is a maximal element in the set of all write events that occur �-before r in
s or w is not �-related to r.

Because the set of all events is totally ordered, this definition gives the same
results as the one above.

We now consider the work that needs to be done to move to a new store from
a given store s and an action set a. First, oh must be chosen to force for every
thread T every event of T in a to be ordered after every event of T in s. Second,
oi must be chosen to force a total ordering on all events in s ∪ a merging the
orderings for each thread in a and satisfying the lock condition. Note that the
lock condition may not always be satisfiable. Given s∪ a∪ oh ∪ oi it is not hard
to see that there can be at most one valid linking l such that s ∪ a ∪ oh ∪ oi ∪ l
is a valid store.

2.4.2 The LC Order Model

Location consistency requires all events on a memory line are (conditionally)
totally ordered. Additionally, lock and unlock events introduce a total order
across memory lines for the same location.

Definition 2.19 (Ordering Invariants for Action Sets) An action set s
must satisfy the conditions:

LC-A1: for every memory line m(T,L) and total extensions s′ of s, s′ ↓ m(T,L)
is totally ordered, and,

LC-A2: the lock condition for action sets for all normal locations L.

Definition 2.20 (Ordering Criterion for Stores) An store s must satisfy
the conditions:

LC-S1: s ↓ m(T,L) is totally ordered, for every memory line m(T,L),

28

LC-S2: it satisfies the locking condition for all normal locations, and,

LC-S3: it is properly initialized.

The definition of Write Visibility is the same as for SC.
We now consider the work that needs to be done to move to a new store

from a given store s and an action set z. First, oh must be chosen to force for
every memory line m(T,L) every event in z to be ordered after every event of
T in s. Second, oi must be chosen to satisfy the lock condition. Note that the
lock condition may not always be satisfiable. Also, because of race conditions
and the lack of a total order more than one write event may be visible at a read
event. Therefore multiple linkings may be possible.

2.4.3 The HB Order Model

This definition is drawn from [Pug04a, P.17].

Definition 2.21 (Ordering Invariants for Action Sets) An action set s
must satisfy the conditions:

HB-A1: for all threads T and total extensions s′ of s, s′ ↓ Thread(T) is totally
ordered, and,

HB-A2: the lock condition for action sets for all normal locations L.

Definition 2.22 (Ordering Criterion for Stores) An store s must satisfy
the conditions:

HB-S1: s ↓ Thread(T) is totally ordered, for every thread T ,

HB-S2: it satisfies the locking condition for all normal locations,

HB-S2v: for all volatile locations V , if s ` r(E′) = w(E) for two events E,E′

for V , then s ` E � E′

HB-S3: it is properly initialized.

The condition for write visibility is the same as for LC.
From this the following proposition is easy to establish:

Proposition 2.6 Let s be a store satisfying the HB Order Model and containing
no synchronization events. Then s satisfies the LC Order Model. Further, for
every read event in s the set of visible write events is the same according to both
Order Models.

29

We now consider the work that needs to be done to move to a new store from
a given store s and an action set z. First, oh must be chosen as for sequential
consistency. Second, oi must be chosen to satisfy the lock condition. Note that
the lock condition may not always be satisfiable. Third, an order relation must
be introduced between every write on a volatile variable and a read which is
answered by that write.

2.5 Examples

Example 2.3 (Table 1 program) Consider a run of the program in Table 1
for the LC machine. Initially the program consists of Thread 1, Thread 2 and
an initial store z0 with memory lines

m(1, r2),m(1, a),m(1, b),m(2, r1),m(2, a),m(2, b)

and with initial events

{w(Ai, 0, a), w(Ai) = 0, w(Bi, 0, b), w(Bi) = 0, n(a), n(b)} (3)

We read the set thus. a and b are normal locations. There is a write event
w(Ai,0,a) on memory line m(0, a), with associated variable Ai. The constraint
associated with the write is Ai=0. Similarly for the other events. Note that
there is no order relation between the events, and the linking is empty (there
are no read events).

In one step, Thread 1 may communicate the following action set z1 to the
store:

{r(A1r, 1, a), w(R21w, 1, r2), w(B1w, 1, b), w(R21w) = r(A1r), w(B1w) = 1, n(R2)}
(4)

Since the action set does not contain two events on the same memory line, no
ordering information is needed.

At the same time, Thread 2 may communicate the following action set z2:

{r(B2r, 2, b), w(R12w, 2, r1), w(A2w, 2, a), w(R12w) = r(B2r), w(A2w) = 2, n(R1)}
(5)

As above, this set contains no ordering information.
The new store will contain all these events. Additionally, memory will add

ordering constraints oh to ensure that all actions by each thread are after the
actions already recorded on that memory line.

{Ai� A1r, Bi� B1w, Bi� B2r, Ai� A2w} (6)

Since there are no synchronization events, no synchronization constraints need
to be added.

Finally, the store must add a linking to answer the reads communicated to
it. For instance one linking l1 is:

{r(A1r) = w(A2w), r(B2r) = w(B1w)} (7)

30

As can be verified, the set of constraints σ1 = z0 ∪ z1 ∪ z2 ∪ oh ∪ l1 forces a
unique solution for program variables: every read variable has a concrete value,
and only one value is possible. In this store, the “current value” of the memory
line m(1, r2) is 2 and of m(2, r1) is 1.

Another possible linking l2 is:

{r(A1r) = w(A2w), r(B2r) = w(B2i)} (8)

Again, the set of constraints σ2 = z0∪z1∪z2∪oh∪s2 is uniquely satisfiable,
and provides current values of 2 for m(1, r2) and 0 for m(2, r1).

Two other stores are possible, corresponding to the two other linkings for
the two reads.

Figure 2 depicts the stores S0, σ1 and σ2 using an evident graphical notation.

Appendix A lists all the test cases in [Pug04b] and [Pug04a] and discusses
their results for CCM(HB).

2.6 Properties satisfied by the LC model

No thin air reads. This property requires that all reads of a variable must
return a value that was communicated by some thread to memory in a write
event on that variable, and this write event must be visible to the read event,
per the ordering rules.

This property is structurally guaranteed by CCMs because they can only
establish “variable-variable” value constraints, linking a read event to a write
event to the same location. Such linkings may be thought of as introducing
“flows” in a graph, not supplying sources or sinks. The “reasoning” performed
by the constraint system to flow values throug the graph is merely reasoning
that captures the logical properties of implications and conjunction.

All reads are answered by writes to the same location. Because a linking
must satisfy the Unique Solutions Criterion, each read returns a concrete value.

In particular, this implies that Type Safety is preserved.

Adding threads does not invalidate executions. More threads can only
lead to more writes and hence more ways of answering reads. Previous ways of
answering reads continue to be valid.

Specifically, CCM Machines satisfy linking monotonicity. Suppose a CCM
machine produces a set of linking constraints l in a valid store s in response to
valid input action sets s0, . . . , sk−1 received from threads z0, . . . , zk−1. Let sk

be a new action set received from thread zk such that s0, . . . , sk−1, sk is a valid
input action set for s. Then there must be a new store for s, s0, . . . , sk−1, sk

that contains l.

Instrumentation reads are benign. Any linking established by memory
cannot be invalidated because of the presence of more reads. Therefore if the

31

Figure 2: The evolution of the store for the program in Table 1

32

program is modified only by adding more reads all previous executions continue
to be valid. This is true even if an originally properly-synchronized program
now contains data-races.

Properly synchronized programs have sequentially consistent execu-
tions. The outline of the proof of this proposition for CCM(HB) is as follows.
Similar considerations apply to other machines.

Let s be a valid store reached at some stage of the execution, a an input ac-
tion set, and oh and oi sequencing and synchronization constraints respectively.
Let l be a valid linking such that for s′ = s ∪ a ∪ oh ∪ oi ∪ l, we have s, a � s′.
We observe that if there are no data races, then all valid linkings are equivalent,
that is, for any other store s′′ ⊇ s ∪ a ∪ oh ∪ oi such that s, a � s′′, we have
s′ ` r(E) = k iff s′′ ` r(E) = k. Further, we observe that if s forces a read event
E to be answered by a write event E′ then s ` E′ � E. (Why? Because proper
initialization ensures that there is always such a dominated write that can be
used to answer a read in every valid store. If there are no data races then there
are no other writes that can be visible at the read in s′, which has resolved all
the conditionals.) Next we observe that any scheduling (= total order) of the
the events in the program that respects the � relation in s′ will return the val-
ues for the reads determined by s′ and corresponds to a sequentially consistent
execution of the program.

Compiler optimizations. We consider some compiler optimizations that are
sound for CCMs. In particular we consider CCM(LC).

Two reads to the same mutable global variable by the same thread with no
intervening writes to that variable may always be replaced by a single read into
a register and reuse of that register.

3 Operational Semantics

The reader interested in examples may wish to skip this section (which is more
formal in nature) on the first reading and proceed to Appendix A.

In this section we present a framework for the operational semantics of a
simple, toy language CJ, parametrized by the underlying Order Model. A choice
of an Order Model yields an operational semantics for CJ. The language is
intended to illustrate how to use CCMs in a concrete context and is not intended
for serious programming.

The syntax of the language is given in Table 5. It deals with constructs
necessary for JSR 133. To deal with a fuller language, one needs to add classes,
methods, dynamic object creation, method invocation, exceptions etc. These
are concerned primarily with local thread execution and are hence not central
to the concerns of this paper.

33

(Expressions) e ::= L (Variables)
k (Literals)
e + e | e× e | . . . (Arithmetic terms)
e.f (Field selection)
e[e] (Array selection)

(Conditions) c ::= e > e | e < e | e! =e | . . . (Comparisons)
!(c) (Negation)
c && c (Conjunction)
c || c (Disjunction)

(Statements) S ::= init L=k; (Normal Var Declaration)
volatile L=k; (Volatile Var Declaration)
L=e; (Assignment)
lock(L); (Locking)
unlock(L); (Unlocking)
S1 S2 (Sequencing)
if (c) {S} [else {S}] (Conditionals)
d → S [: S] (Pending Conditionals)
while (c) {S} (Iteration)
do {S} while (c) (Iteration)
P; (Parallelism)

(Command) P ::= thread {S} (Thread)
thread(T) {S} (Active Thread)
P | P (Parallel Composition)

(Loc Vars) L ::= 〈ident〉 (Static Location)
L.f (Object field)
L[e] (Array element)

The categories Literals (k), Pending Conditions (d), Locations(l) and Thread
Vars(T) are defined in Table 4.
Input programs may not have any occurrences of pending conditionals, active
threads or use the thread variable 0. These are generated by the operational
semantics.

Table 5: Syntax for a mini-language, CJ

34

3.1 Informal semantics

Variables in this programming language denote locations in shared memory.
Locations may be declared normal or volatile. Accesses to volatile locations are
considered synchronized, and follow the rules of the underlying Order Model.
Access to normal variables is unsynchronized. Each location is associated with
a lock which permits locking and unlocking operations for synchronization.

Locations may contain integers, or references to objects and arrays. Objects
have one or more fields, each of which is a location. Arrays are indexed using
arithmetic expressions and are intended to be of fixed size, as determined by
the literal used to initialize the location. Object fields and array locations may
be assigned values.

The language is untyped, for simplicity of exposition.
A few exemplar control constructs are provided: assignment, sequencing,

conditionals (single and two-armed), while loops.
Threads may be created dynamically and run in parallel with each other.
The syntax permits two control constructs, pending conditionals and active

threads, which are not allowed to occur in source programs. These constructs
are introduced by the operational semantics as part of the elaboration of con-
ditionals and threads respectively.

3.2 Formalization of operational semantics

The semantics is defined in the usual structural operational semantics style
due to Plotkin. We take a configuration to be an ordered pair consisting of
a statement to be executed and the store in which it is to be executed, or
just a store (the statement has terminated). The transition relation −→ is a
binary relation on configuration which specifies how one configuration evolves
into another.

Definition 3.1 (var(s)) For s a set of constraints, let var(s) stand for the set
of variables occurring in a constraint in s.

The operational semantics we present is parameterized by two relations, �

and �. These are defined differently based on the underlying Order Model. We
now defined �:

Definition 3.2 (Ordered union of constraints) Let s and s′ be two sets of
constraints. The ordered union of two sets of constraints is defined thus:

s �SC s′
def
= s ∪ s′ ∪ {E � E′ | E ∈ e(s), E′ ∈ e(s′)} (9)

s �HB s′
def
= s �SC s′ (10)

s �LC s′
def
= s ∪ s′ ∪ {l(E) = l(E′) → E � E′ | E ∈ e(s), E′ ∈ e(s′)}(11)

35

Note that the equality of two locations may depend on runtime information
(e.g. the location denoted by A[r] depends on the runtime value of r); hence for
LC we must generate constraints that check the equality of locations at runtime.

The inference rules for −→ uses a few auxiliary relations which we define
first.

3.3 Expression, condition and location elaboration.

We define the relation “Thread T , in the presence of the store z, can elaborate
the expression e into the read term r, extending the action set s to s′”, written
as:

T, z ` 〈e, s〉=⇒〈r, s′〉

In this rule and the others to follow, we use the generic ordered union, �.
We should understand this to mean that to obtain the corresponding transition
for the O-machine (for O equals HB, SC or LC), we should take �O for �.

E 6∈ var(s)
T, z ` 〈x, s〉 =⇒ 〈r(E), s � {r(E, T, x)}〉

(12)

T, z ` 〈e1, s〉 =⇒ 〈r1, s1〉
T, z ` 〈e2, s1〉 =⇒ 〈r2, s2〉

T, z ` 〈e1 op e2, s〉 =⇒ 〈r1 op r2, s2〉
(13)

T, z ` 〈e, s〉 =⇒ 〈r, s1〉 X 6∈ var(s)
T, z ` 〈e.f, s〉 =⇒ 〈r(X), s1 � {r(X, T, r.f)}〉

(14)

T, z ` 〈e, s1〉 =⇒ 〈r1, s1〉 T, z ` 〈e2, s1〉 =⇒ 〈r2, s2〉 X 6∈ var(s)
T, z ` 〈e1[e2], s〉 =⇒ 〈r(X), s2 � {r(X, T, r1[r2])}〉

(15)

We now consider the elaboration of literals. Scalar literals (constants, null)
generate themselves:

k a scalar constant
T, z ` 〈k, s〉 =⇒ 〈k, s〉

(16)

The object literal notation leads to the generation of events that create a
new object and that initialize the fields of the object:

T, z ` 〈e1, s � {o(O, T)}〉 =⇒ 〈r1, s1〉
T, z ` 〈e2, s1 � {w(O1, T, r(O).f1), w(O1) = r1}〉 =⇒ 〈r2, s2〉
. . .
T, z ` 〈en, sn−1 � {w(On−1, T, r(O).fn−1), w(On−1) = rn−1}〉 =⇒ 〈rn, sn〉
sn+1 = sn � {w(On, T, r(O).fn), w(On) = rn})
∀i ≤ n : Oi 6∈ var(si) O 6∈ var(s)

T, z ` 〈{f1 = e1, . . . , fn = en, s〉 =⇒ 〈r(O), sn+1〉
(17)

36

Similarly for an array literal:

T, z ` 〈e1, s � {a(A, T)}〉 =⇒ 〈r1, s1〉
T, z ` 〈e2, s1 � {w(A1, T, r(A)[1]), w(A1) = r1}〉 =⇒ 〈r2, s2〉
. . .
T, z ` 〈en, sn−1 � {w(An−1, T, r(O)[n− 1]), w(An−1) = rn−1}〉 =⇒ 〈rn, sn〉
sn+1 = sn � {w(An, T, r(O)[n]), w(An) = rn}
∀i ≤ n : Ai 6∈ var(si) A 6∈ var(s)

T, z ` 〈[e1, . . . , en], s〉 =⇒ 〈r(O), sn+1〉
(18)

The rules for condition (=⇒c) elaboration are similar, except that they are
defined for conditions rather than expressions.

The rules for location elaboration are straightforward. Loc Vars are elabo-
rated to locations, possibly with events.

E 6∈ var(s)
T, z ` 〈x, s〉 =⇒l 〈r(E), s � {r(E, T, x)〉

(19)

T, z ` 〈L, s〉 =⇒l 〈l, s1〉
T, z ` 〈L.f, s〉 =⇒l 〈l.f, s〉

(20)

T, z ` 〈L, s〉 =⇒l 〈l, s1〉 T, z ` 〈e, s1〉 =⇒ 〈r, s2〉
T, z ` 〈L[e], s〉 =⇒l 〈l[r], s2〉

(21)

3.4 Rules for statements

We now define the relation “Thread T , in the presence of the store z, can
elaborate statement S into statement S′, producing the action set s”, written
as:

T, z ` S
s−→ S′

We omit s if it is empty. For an action set s and a pending condition d, we will
use the notation d → s for the set {d → u | u ∈ s}. Also, we use the notation
z ↓T,x to indicate that the memory line m(T, x) in z, i.e. the set of events in z
generated by thread T on location x.

We treat the declaration of “normal” and “volatile” variables identically in
the transition system using the markers v(x) and n(x) in the store to distinguish
them. The Order Model will treat read and write accesses to volatile variables
differently (in the definition of �).

z ↓T,x= ∅ s = {n(x)}
T, z ` init x = e

s−→ x = e

z ↓T,x= ∅ s = {v(x)}
T, z ` volatile x = e

s−→ x = e
(22)

Lock/unlock. Lock and unlock actions are elaborated into events immedi-
ately. Note that the transition for the entire configuration will depend on
whether the various lock/unlock events offered by different threads can be rec-
onciled (see Rule 37).

37

s = {l(E, T, x)}
T, z ` lock(x) s−→ ε

s = {u(E, T, x)}
T, z ` unlock(x) s−→ ε

(23)

Assignment. The rule for assignment statements uses the auxiliary relation
introduced above to generate a set of events from the assignment statement.

T, z ` 〈e, ∅〉 =⇒ 〈r, s〉 s′ = s � {w(E, T, x), w(E) = r}

T, z ` x = e
s′

−→ ε
(24)

Conditionals. Conditionals are immediately rewritten into pending condi-
tionals, with events generated corresponding to the condition c:

T, z ` 〈c, ∅〉 =⇒ 〈d, s〉
T, z ` if(c){S} s−→ d → S

T, z ` if(c){S}else{S′} s−→ d → S : S′

(25)

A pending conditional may use the information in the store to discharge the
conditional. This is the standard rule for conditionals. As usual for constraint
systems, we use the notation z ` d to indicate that the constraint d is entailed
by the store z.

z ` d
T, z ` (d → S) −→ S
T, z ` (d → S : S′) −→ S

z `!d
T, z ` (d → S) −→ ε
T, z ` (d → S′ : S) −→ S

(26)

However, we also wish to allow speculative execution. This can be done
by allowing a statement in a conditional to perform without the associated
condition d being discharged. All events generated in this way must be made
conditional on d:

T, z ` S
s−→ S′ | ε

T, z ` (d → S) d → s−→ d → S′ | ε
T, z ` (d → S : S1)

d → s−→ d → S′ : S1 | (!d) → S1

T, z ` (d → S1 : S) !d → s−→ d → S1 : S′ | d → S1

(27)

Sequencing. First we present the standard transition rule for sequential ex-
ecution. The sequential composition of two statements (S1 S2) can take a step
if the first statement S1 can take a step.

T, z ` S1
s−→ S′1 | ε

T, z ` S1 S2
s−→ S′1 S2 | S2

(28)

The next transition models out of order execution. Suppose under condition
d, S1 can terminate, without generating any events. (For instance, S1 may be

38

a pending conditional, and d may entail the negation of its condition.) Then
we allow S2 to execute, and generate events. However, these events can be
communicated to memory only under the condition that d holds.

T, z ∪ {d} ` S1 −→ ε T, z ∪ {d} ` S2
s−→ S′2 | ε s′2 = d → s2

T, z ` S1 S2
s−→ S1 S′2 | ε

(29)

Iteration Iteration is performed in the standard way by translation into con-
ditionals and sequencing. No special rules are needed for out of order or specula-
tive execution, because the corresponding rules for sequencing and conditionals
are automatically available.

T, z ` while(c){S} −→ if(c){S while(c){S}} (30)
T, z ` do{S}while(c) −→ S if(c){do{S}while(c)} (31)

Parallel Commands. A thread can be activated by generating a thread ini-
tiation event. This associates the thread with a thread identifier that must be
distinct from the current thread, and from any previously created threads. (The
conditions for combining action sets will ensure that this thread id is different
from the thread id of any other thread created simultaneously within another
parallel component.)

s = {i(X, T)} T 6∈ var(z) ∪ {T ′}
T ′, z ` thread{S} s−→ thread(T){S}

(32)

T, z ` S
s−→ S′

T ′, z ` thread(T){S} s−→ thread(T){S′}
T, z ` S

s−→ ε s′ = s � {x(X, T)} X 6∈ var(s)

T ′, z ` thread(T){S} s′

−→ ε

(33)

We now state the rule for obtaining an action set for a parallel composition
of statements.5

The first rule allows a single component of a parallel execution to contribute
to the action set:

T, z ` P1
s−→ P ′

1 | ε
T, z ` P1 | P2

s−→ (P ′
1 | P2) | P2

T, z ` P2 | P1
s−→ (P2 | P ′

1) | P2

(34)

The second rule allows both components to contribute. Below, the require-
ment that the variables associated with s1 and s2 be distinct enforces that new

5Please note that “ | ” is being used in two different senses here – first as syntax for
parallel composition in the object language, and second as syntax for alternatives in the
meta-language. We trust the reader will use contextual information to distinguish the two
kinds of uses.

39

threads created in s1 and s2 have distinct thread ids. It also enforces that the
events of the two action sets are different. We use an evident, commonly used
shorthand to collapse four separate inference rules (one for each choice of the
two assumptions) into one figure:

T, z ` P1
s1−→ P ′

1 | ε T, z ` P2
s2−→ P ′

2 | ε s = s1 ∪ s2 var(s1) ∩ var(s2) = ∅
T, z ` P1 | P2

s−→ P ′
1 | P ′

2

T, z ` P1 | P2
s−→ P ′

1

T, z ` P1 | P2
s−→ P ′

2

T, z ` P1 | P2
s−→ ε

(35)
This completes the specification of the rules for each kind of statement.
We allow multiple elaboration steps to be considered as a single elaboration

step. This allows arbitrarily many statements to be elaborated into a single
action set.

T, z ` S
s1−→ S1 T, z ` S1

s2−→ S2

T, z ` S
s1�s2−→ S2

(36)

3.5 State transitions.

We now define the central relation of interest to us

〈S, z〉 −→ 〈S′, z′〉 | z′

We read 〈S, z〉 −→ 〈S′, z′〉 as “Statement S can be executed in store z to obtain
statement S′ and store z′”. We read 〈S, z〉 −→ z′ as “Statement S terminates
in store z′ to yield store z′.

0, z ` S
s−→ S′ | ε z, s � z′

〈S, z〉 −→ 〈S′, z′〉 | z′
(37)

Here we use the thread constant 0 to indicate the initial thread.

Proposition 3.1 Suppose T, z ` S
s−→ S′. Then z is a valid action set for

CCM(HB) and e(s) ∩ e(z) = ∅.

Many other propositions may be proven, and will be the subject of future
work.

4 Conclusion and future work

We have presented a simple framework for concurrent access to shared mem-
ory, the Concurrent Constraint-based Memory Model. This framework is
parametrized with an underlying Order Model. Different event ordering pro-
posals, such as Location Consistency and Happens Before ordering are consis-
tent with this framework. Threads communicate with shared memory using

40

ordered sets of read and (conditional) write, lock and unlock events, together
with constraints on variables associated with these events. The model supports
a notion of volatile variables, locking/unlocking etc. We believe it can be ex-
tended to account for newer concurrency constructs such as atomic sections.
Memory responds to these requests by linking reads with the writes in such a
way that the associated constraints are uniquely satisfied, and the rules of the
underlying Order Model are preserved. Each transition moves a valid store to
a valid store and corresponds to the completion of the set of events communi-
cated by threads in that step. This approach provides significant flexibility to
the implementers of the memory module since it is consistent with a variety of
advanced implementation techniques.

Based on these ideas we have presented a simple operational semantic frame-
work (parametrized by Order Models) which supports out of order instruction
execution, speculative execution and look-ahead execution while preserving the
property that correctly synchronized programs cannot go wrong.

We believe the semantic framework is naturally motivated and easy to reason
with informally. We have worked out test cases in [Pug04b] and [Pug04a]. Of
the 30-odd cases, our proposed theory agrees with all but one of the test cases.
For the one test case (Test 18), we believe there are sound semantic reasons for
the desired result of the test case to be changed (Section A.1.5).

An implementation of CCMs in a constraint language on top of Prolog, using
Constraint-Handling Rules is currently under development [SD04].

Future work. In future work we hope to develop a set of compiler transfor-
mations that are sound for CCM semantics, and understand which “commonly
used” sequential program transformations are not valid. We expect to develop
a denotational semantics and reasoning system for CCM Machines, exploiting
past work on the semantics of concurrent constraint programming [SRP91].

We believe that it will be fruitful to develop “mechanism-oriented” inter-
leaving abstract machines (as discussed in Section 1.3), as implementations of
CCM Machines. Such machines would be easier to relate to implementations
and would be useful in establishing their correctness.

We also intend to explore the definition of higher-level synchronization op-
erations, such as atomic sections, on CCM Machines. Atomic sections specify a
set of events that must be performed atomically, without specifying which locks
to obtain on which variables.

We believe that the structure of CCM Machines may be usefully pulled back
into programming language design, in the form of appropriate type systems and
assertional systems. For instance, it may make sense for the programmer to
directly assert ordering constraints on events and value constraints on locations
in the program syntax. Conceptually, these constraints would be transmitted
to Main Memory at run-time. For instance, a programmer may specify that
a location can only take on the value 0 and 42. The compiler may use such
assertions to introduce early writes that could permit certain behaviors that may
not have been permissible without these assertions. In effect, certain linkings

41

that would have been ruled out by Memory because they do not uniquely specify
values for reads may now be permitted because the additional constraints force
a unique valuation.

We hope to examine several current and proposed high-performance parallel
machines and develop CCM Machine models for their operation.

Finally we note that CCM Machines may be simulated in any (concurrent)
constraint programming language supporting the constraint system discussed
in this paper. We are currently investigating such an implementation with
collaborators.

Acknowledgements. My thanks to Doug Lea for keeping on pushing this
work in productive directions. His focus on getting convergence with the other
models forced me to look for ways to express the intuition behind compiler rea-
soning within the constraint-based framework. His insistence on understanding
where LC semantics differed from an ordering based on the “Happens Before”
relation led to the realization that the techniques of this paper worked also
with the “Happens Before” relationship. This led to the formulation of the
HB-machine. Martin Rinard suggested that the framework be applied to other
consistency models. Hans Boehm suggested that “thin air reads” be formalized
more carefully.

My thanks also to Vivek Sarkar, Guang Gao and Zhang Yuan for detailed
discussions that helped move the subject of this paper forward.

Thanks to Robert O’Callahan, Perry Cheng, Julian Dolby and Kemal
Ebcioglu of the PERCS Programming Model project at IBM TJ Watson Re-
search for discussions on related topics and to Tom Schrijvers for a careful
reading of the paper.

My thanks to Bill Pugh and the participants of the Java Memory Model
mailing list for their contributions to the definition of the problem, especially
the identification of test cases.

References

[Adv04] S. Adve. Sc-. Technical report, 2004.
http://www.cs.umd.edu/ pugh/java/memoryModel/.

[AG95] S. Adve and K. Gharachorloo. Shared Memory Consistency Models:
A tutorial. Technical report, Digital Western Research Laboratory,
1995.

[APP99] S. Adve, V. S. Pai, and P.Ranganthan. Recent Advances in Memory
Consistency Models for Hardware Shared-Memory Systems. Proceed-
ings of the IEEE, 87(3):445–455, March 1999.

[GJSB00] J. Gosling, W. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, 2000.

42

[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proceedings of the 17th Annual
ACM Symposium on Computer Architecture, pages 15–25, June 1990.

[GS97] A. Gontmakher and A. Schuster. Java consistency: Non-operational
characterization for the Java Memory Behavior. Technical report,
Department of Computer Science, Technion, 1997.

[GS00] G. Gao and V. Sarkar. Location Consistency – A New Memory Model
and Cache Consistency Protocol. IEEE Transactions on Computers,
49(8):798–813, August 2000.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
28(9), 1979.

[MAS00] J.-W. Maessen, Arvind, and X. Shen. Improving the Java Memory
Model Using CRF. In OOPSLA, 2000.

[MP04] J. Manson and W. Pugh. The Manson/Pugh
model. Technical report, U Maryland, 2004.
http://www.cs.umd.edu/ pugh/java/memoryModel/.

[Pug01] W. Pugh. Proposal for Java Memory Model and Thread Specification
Revision, 2001. JSR 133, http://www.jcp.org/en/jsr/detail?id=133.

[Pug04a] W. Pugh. Java Memory Model and Thread Specification Revision,
2004. JSR 133, http://www.jcp.org/en/jsr/detail?id=133.

[Pug04b] W. Pugh. Java Memory Model Causality Test
Cases. Technical report, U Maryland, 2004.
http://www.cs.umd.edu/ pugh/java/memoryModel/.

[Pug04c] W. Pugh. The Java Memory Model is Fatally Flawed. Concurrency:
Practice and Experience, 2004? To appear.

[Sar92] V. Saraswat. The Category of Constraint Systems is Cartesian
Closed. In LICS ’92, pages 341–345, 1992.

[Sar93] V. Saraswat. Concurrent Constraint Programming. Doctoral Disser-
tation Award and Logic Programming. MIT Press, 1993.

[SAR99] X. Shen, Arvind, and L. Rudolph. Commit-reconcile and fences (crf):
a new memory model for architects and compiler writers. In Pro-
ceedings of the 16th Annual International Symposium on Computer
Architecture, pages 150–161, 1999.

[SD04] T. Schrijvers and B. Demoen. JMMSolve: a generative reference
implementation of CCM Machines. Technical Report Report CW
379, Katholieke Universiteit Leuven, January 2004.

43

[SRP91] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations
of concurrent constraint programming. In Proceedings of the Eigh-
teenth ACM Symposium on Principles of Programming Languages,
1991.

[YGL04] Y. Yang, G. Gopalakrishna, and G. Lindstrom. A Generic Oper-
atonal Memory Model Specification Framework for Multithreaded
Program Verification. Technical report, School of Computing, U. of
Utah, 2004.

44

A Test cases

In this section we discuss the Causality Test cases of [Pug04b]. The results are
summarized in Table 6. Cases involving volatile variables and thread creation
ordering conditions are not discussed.

Each test case shows an Action Set that can be generated from the cor-
responding program using the operational semantics. We do not show all the
order relations that are generated by the operational semantics, just enough to
entail all of them.

We use an evident shorthand to indicate chains of ordering relations between
events.

In some of the programs below, we present a “Simplified Action Set” for
ease of exposition. Such an action set omits the underlying event and order
constraints. The treatment of variables (such as R1,R2) which are used by
only one thread is simplified since their linking is always forced. In particular,
these variables are assigned to once and are read at most once; we know that
the value returned in such cases is the value written, so the constraints can be
simplified by using the same variable for the reads and writes. Finally, we replace
read (write) terms r(X) (w(X)) with the underlying variable X (since the event
variable is not used for any other purpose). All these simplifications are sound
and considerably simplify the presentation of constraints from a pedagogical
point of view.

For readers not accustomed to constraint reasoning, some of the cases below
might appear “magical”. Constraint reasoning can typically be understood
declaratively (one reasons in terms of valuations) and operationally (one reasons
in terms of the behavior of an underlying constraint solver). If the constraint
solver is complete (as we assume) then the two forms of reasoning are equivalent.
Often the first is useful to understand the result, and the second to understand
how the result was obtained.

For ease of exposition, we will often describe each test case from three points
of view, the two mentioned above, as well as the “compiler’s” point of view dis-
cussed in [Pug04b]. We caution that in our opinion the “compiler’s” point of
view is suggestive but not definitive. It does help, though, to show how “stan-
dard” compiler reasoning fits into the constraint-based reasoning framework.

A.1 Promotion of conditional events based on case anal-
ysis

The example below shows that a condition may be discharged if it holds for each
value that can be generated for a variable by the given linking. Discharging the
condition causes events guarded by that condition to become unconditional,
typically enabling other flows of information.

45

bf Test Case “Desired” result HB result Reference Comments
Test 1 Allowed ok Page 47
Test 2 Allowed ok Page 53
Figure 2 Allowed ok Page 55
Test 3 Allowed ok Page 54
Test 4 Forbidden ok Page 59
Test 5 Forbidden ok Page 60
Test 6 Allowed ok Page 49
Figure 15 Allowed ok Page 50
Test 7 Allowed ok Page 67
Test 8 Allowed ok Page 56
Test 9 Allowed ok Page 57
Test 9a Allowed ok Page 58
Test 10 Forbidden ok Page 61
Test 11 Allowed ok Page 68
Test 12 Allowed ok Page 65
Test 13 Forbidden ok Page 62
Figure 11 Allowed ok Page 63
Figure 19 Forbidden ok Page 64
Test 14 Forbidden ok Page 71 Volatile
Test 15 Forbidden ok Page 73 Volatile
Test 16 Allowed ok Page 69
Figure 10 Allowed ok Page 70
Test 17 Allowed ok Page 51
Test 18 Allowed Wrong Page 52
Test 19 Allowed (Thread joins)
Test 20 Allowed (Thread joins)

HB-semantics agrees with LC-semantics for all these cases. The Test cases are
from [Pug04b] and the Figures are from [Pug04a].

Table 6: The result of Test Cases, per HB-semantics

46

A.1.1 Test 1

Program Action set

init x=0;
init y=0;
thread {
r1=x;
if (r1>=0) {
y=1;

}
} |
thread {
r2=y
x=r2
}

w(Xi,0,x), w(Xi)=0, w(Yi,0,y), w(Yi)=0,
i(T1c, T1),
r(X1r,T1,x), w(R1w,T1,r1),
w(R1w)=r(X1r), r(R1r,1,r1),
r(R1r)>=0 ->(w(Y1w,T1,y), w(Y1w)=1),
x(T1d,T1),
Xi<<Yi<<T1c<<X1r<<R1w<<R1r<<Y1w<<T1d

i(T2c,T2),
r(Y2r,T2,y), w(R2w,T2,r2), w(R2w)=r(Y2r),
r(R2r,T2,r2), w(X2w,T2,x), w(X2w)=r(R2r),
x(T2d,T2),
T2c<<oY2r<<R2w<<R2r<<X2w<<T2d

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: ok
Linking: {r(X1r)=w(X2w),r(R1r)=w(R1w), r(R2r)=w(R2w),

(r(Y2r)=(r(R1r)>=0)?w(Y1w):w(Y2i))}

Note that the linkings force r(R1r)=r(R2r). The set of constraints boils
down to R=(R>=0)?1:0, for R=r(R1r)=r(R2r). This has only one solution, R=1.
See Figure 3.

Operationally, one may understand the constraints as follows. The linking
forces Y2r to receive its value from one of two places. For both of these places
it can be shown that the condition can be discharged. Hence the condition can
be discharged. But this forces only one of the two values to be feasible 1. Hence
the system has a unique solution.

The compiler-based point of view from [Pug04b] is:

Decision: Allowed, since interthread compiler analysis could de-
termine that x and y are always non-negative, allowing simplification
of r1 ¿= 0 to true, and allowing write y = 1 to be moved early.

47

An LC representation of a run for Test Case 1. The dotted arrows represent
write constraints, and the dashed arrows represent linkings. Vertical lines rep-
resent memory lines and hence implicitly represent ordering relations – in LC
programs without synchronization only two events from the same thread tar-
geted to the same location can be ordered.

Figure 3: A run for Test Case 1 showing desired behavior

48

A.1.2 Test 6

Program Action Set

init x=0;
init y=0;
thread {
r1=x;
if (r1==1) {
y=1;

}
} |
thread {
r2=y;
if (r2==1) {
x=1;
}
if (r2==0) {
x=1;
}
}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
i(T1c, T1),
r(X1r,1,x),
w(R1w,1,r1), w(R1w)=r(X1r),
r(R1r,1,r1),
(r(R1r)==1) -> (w(Y1w,1,y), w(Y1w)=0),
x(T1d,T1),
Xi<<Yi<<T1c<<X1r<R1w<<R1r<<Y1w<<T1d,

i(T2c,T2),
r(Y2r,T2,y),
w(R2w,T2,r2), w(R2w)=r(Y2r),
r(R2r1,T2,r2),
r(R2r1)==1) -> (w(X2w1,T2,x), w(X2w1)=1),
r(R2r2,T2,r2),
r(R2r2)==0) -> (w(X2w2,T2,x), w(X2w2)=1),
x(T2d,T2),
Yi<<T2c<<Y2r<<R2w<<R2r1<<X2w1,
X2w1<<R2r2<<X2w2<<T2d

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: ok
Linkage: {r(X1r)=(r(R2r1)=1)?w(X2w1):(r(R2r2)=0)?w(X2w2):w(Xi),

r(R1r)=w(R1w), r(R2r1)=w(R2w),
r(R2r2)=w(R2w),
r(Y2r)=(r(R1r)==1)?w(Y1w):w(Yi)}

The constraints simplify to

r(R1r)=(r(R2r1)==1)?1:(r(R2r2)==0)?1:0,
r(R2r1)=(r(R1r)==1)?1:0}

This has only one solution.
Operationally, based on the linkage for y, it can be established that y can

take on only the values 0 or 1. For both of these cases, the linkage for x
establishes that x=1. In turn, through Thread 1, this establishes that y=1.

From [Pug04b]:

Decision: Allowed. Intrathread analysis could determine that

49

thread 2 always writes 1 to x and hoist the write to the beginning
of thread 2.

A.1.3 Figure 15

Program Action Set

init x=0;
init y=0;
thread {
r1=x;
if (r1==1) {
y=1;

}
} |
thread {
r2=y;
if (r2==1) {
x=1;
} else {
x=1;
}
}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
i(T1c, T1),
r(X1r,1,x),
w(R1w,1,r1), w(R1w)=r(X1r),
r(R1r,1,r1),
(r(R1r)==1)
-> (w(Y1w,1,y), w(Y1w)=0),

x(T1d,T1),
Xi<<Yi<<T1c<<X1r<<R1w,
R1w<<R1r<<Y1w<<T1d,

i(T2c,T2),
r(Y2r,T2,y),
w(R2w,T2,r2), w(R2w)=r(Y2r),
r(R2r,T2,r2),
r(R2r)==1)

-> (w(X2w1,T2,x), w(X2w1)=1)
: (w(X2w2,T2,x), w(X2w2)=1),

x(T2d,T2),
Yi<<T2c<<Y2r<<R2w<<R2r<<T2d,
r(R2r1)==1)

-> (R2r1<<X2w1<<T2d)
: (R2r1<<X2w2<<T2d)

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: ok
Linkage: {r(X1r)=(r(R2r1)==1)?w(X2w1):w(X2w2),

r(R1r)=w(R1w), r(R2r)=w(R2w),
r(Y2r)=(r(R1r)==1)?w(Y1w):w(Yi)}

The constraints simplify to

r(R1r)=(r(R2r)==1)?1:1,
r(R2r)=(r(R1r)==1)?1:0

This has only one solution.

50

Operationally, the linking for x can be used to established that x=1 uncon-
ditionally. This propagates through and establishes y=1.

A.1.4 Test 17

Program Simplified Action Set

init x=0;
init y=0;
thread {
r1=x;
if (r1!=42) {
x=42;
}
r1=x;
y=r1;

} |
thread {
r2=y;
x=r2;

}

Xi=0, Yi=0
R3=X1r1,
(R3!=42) -> X1w=42
R1=X1r2,
Y1w=R1

R2=Y2r,
X2w=R2

Behavior: r1==r2==r3==42
Decision: Allowed.
HB semantics: ok
Linking: X1r1=X2w, X1r2=(R3!=42)?X1w:X2w,Y2r=Y1w

The constraint simplifies to R3=(R3!=42)?42:R3 which has a unique solu-
tion.

Operationally, X1r2 can be established to be 42, given that X1r1 is reading
from X2w. This value propagates through.

From [Pug04b]:

Decision: Allowed. A compiler could determine that at r1 = x in
thread 1, is must be legal for to read x and see the value 42. Changing
r1 = x to r1 = 42 would allow y = r1 to be transformed to y = 42
and performed earlier, resulting in the behavior in question.

51

A.1.5 Test 18

Program Action Set

init x=0;
init y=0;
thread {
r3=x;
if (r3==0) {
x=42;
}
r1=x;
y=r1;

} |
thread {
r2=y;
x=r2;

}

R3=X1r1,
if (R3=0)
X1w=42

R1=X1r2,
Y1w=R1

R2=Y2r,
X2w=R2

Behavior: r1==r2==r3==42
Decision: Allowed.
HB semantics: ok
Linking: X1r1=X2w, X1r2=(R3=0)?X1w:X2w,Y2r=Y1w

The constraint simplifies to R3=(R3=0)?42:R3 which has many solutions.
Hence this linkage must be rejected.

Operationally, the linkage cannot be used to establish that X1r2 is 42, be-
cause of the nature of the condition.

This case is very similar to Test 17 which was allowed. So why a different
solution? In Test 18 the conclusion R3=42 is forced simply by the conditions
associated with the writes and the linkages. In Test 18, an additional piece of
information needs to be added. For instance, arguably the memory may make
a “dataflow” conservative analysis and conclude that (R3 in {0,42}. This
constraint, in conjunction with R3=(R3=0)?42:R3 will force R3=42.

However, doing so would be unsound according to the semantics. The se-
mantics forces all solutions to have R3=0. This example shows that a program
transformation rule which adds runtime assertions based on conservative data
flow analysis is unsound for the semantics. For these assertions may allow infer-
ences to be made that could force a linking that was previously rejected because
it did not force a unique solution to now be accepted. We leave open the ques-
tion if there is a variation of this rule which is sound for this semantics. One
candidate would be a rule which requires that an assertion R in S (which cap-
atures the result of such a data flow analysis) can be added only if S contains a

52

“junk” value. (See also our proposal in Section 4 for allowing programmers to
specify assertions.)

From [Pug04b]:

Decision: Allowed. A compiler could determine that the only
legal values for x are 0 and 42. From that, the compiler could deduce
that r3 != 0 implies r3 = 42. A compiler could then determine that at
r1 = x in thread 1, is must be legal for to read x and see the value 42.
Changing r1 = x to r1 = 42 would allow y = r1 to be transformed to
y = 42 and performed earlier, resulting in the behavior in question.

A.2 Forward substitution

A.2.1 Test 2

Program Action Set

init x=0;
init y=0;
thread {
r1=x;
r2=x;
if (r1==r2)
y=1;

} |
thread {
r3=y
x=r3
}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
i(T1c, T1),
r(X1r1,1,x),
w(R1w,1,r1), w(R1w)=r(X1r1),
r(X1r2,1,x),
w(R2w,1,r2), w(R2w)=r(X1r2),
r(R1r,1,r1), r(R2r,1,r2),
r(R1r)==r(R2r)
-> (w(Y1w,1,y), w(Y1w)=1, R2r<<Y1w)

x(T1d,T1),
Xi<<Yi<<T1c<<X1r1<R1w<<X1r2<<R2w,
R2w<<R1r<<R2r<<T1d,
Y1w<<T1d

i(T2c,T2),
r(Y2r,2,y), w(R3w,2,r3), w(R3w)=r(Y2r),
r(R3r,2,r3), w(X2w,2,x), w(X2w)=r(R3r),
x(T2d,T2),
Yi<<T2c<<Y2r<<R3w<<R3r<<X2w<<T2d

Behavior: r1==r2==r3==1
Decision: Allowed.
HB semantics: Allowed.
Linkage: {r(X1r1)=w(X2w), r(X1r2)=w(X2w),

r(R1r)=w(R1w), r(R2r)=w(R2w), r(R3r)=w(R3w),
r(Y2r0=(r(R1r)=r(R2r))?w(Y1w):w(Yi)}

53

Note that the linkings force r(R1)=r(R2)=r(R3). The set of constraints
boils down to R=(R=R)?1:0, for R=r(R1). This has only one solution, R=1.

Operationally, the system exploits the knowledge that the two reads of x
by Thread 1 can be bound to the same write event, without knowing the value
returned by that event. This enabled Thread 1 to establish y=1 unconditionally,
and the chain of connections forces the two reads of x to obtain 1.

The compiler-based point of view from [Pug04b] is:

Decision: Allowed, since redundant read elimination could result
in simplification of r1 == r2 to true, allowing y = 1 to be moved
early.

Notes: In SC executions, both reads of x always return the same
value (i.e., zero), so that r1 == r2 is always true in SC executions.

A.2.2 Test 3

Program

init x=0;
init y=0;
thread {
r1=x;
r2=x;
if (r1==r2) {
y=1;

}
} |
thread {
r3=y;
x=r3
} |
thread {
x=2;
}

Behavior: r1==r2==r3==1
Decision: Allowed.
HB semantics: Allowed.

Test 3 has the same justification as Test 2. The extra thread is irrelevant,
per the discussion on Linking Monotonicity in Section 2.6.

From [Pug04b]:

Decision: Allowed, since redundant read elimination could result
in simplification of r1 == r2 to true, allowing y = 1 to be moved

54

early.
Notes: Same as test case 2, except there are SC executions in

which r1 != r2

A.2.3 Figure 2

Program Action Set

init p = {x=0};
init q=null;
q=p;
thread {
m = p.x;
n = q.x;
o = p.x;
} |
thread {
p.x = 3;
}

o(O,0),
w(Ox0w,0,r(O).x), w(Ox0w)=0,
n(p),w(P0w,0,p), w(P0w)=r(O),
n(q),w(Q0w,0,q), w(Q02)=null,
r(P0r,0,p),
w(Q0w,0,q), w(Q0w)=r(P0r),
O<<Ox0w<<P0w<<Q0w<<P0r<<Q0w

i(T1c,T1),
r(P1r,T1,p),
r(P1xr,T1,r(P1r).x),
w(Mw,T1,m),w(Mw)=r(P1xr),
r(Q1r,T1,q),
r(Q1xr,T1,r(Q1r).x),
w(Nw,T1,n),w(Nw)=r(Q1xr),
r(P1r2,T1,p),
r(P1r2xr,T1,r(P1r2).x),
w(Ow,T1,o),w(Ow)=r(P1r2xr),
x(T1d,T1),
Q0w<<T1c<<P1r<<P1xr<<Mw<<Q1r<<Q1xr,
Q1xr<<Nw<<P1r2<<P1r2xr<<Ow<<T1d

i(T2c,T2),
r(P2r,T1,p),
w(P2xw,T1,r(P2r).x), w(P2xw)=3,
x(T2d,T2),
Q0w<<T2c<<P2r<<P2xw<<T2d

Behavior: m == o == 0,n == 3
Decision: Allowed.
HB semantics: Allowed.
Linkage: {r(P0r)=w(P0w), r(P1r)=w(P0w), r(P1r2)=w(P0w)

r(P2r)=w(P0w), r(Q1r)=w(Q0w),
r(P1xr)=w(Ox0w), r(P1r2xr)=w(Ox0w),
r(Q1xr)=w(P2xw)}

55

The three read events P1xr, Q1xr, P1r2xr see the two writes Ox0w and
P2xw and may independently choose either value. The given choice produces
the desired result.

A.3 Memory may perform arithmetic reasoning

A.3.1 Test 8

Program Simplified Action set

init x=0;
init y=0;
thread {
r1=x;
r2=1+r1*r1-r1;
y=r2;
} |
thread {
r3=y;
x=r3;
}

R1=X1r,
R2=1+R1*R1-R1,
Y1w=R2

R3=Y2r,
X2w=R3

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: Allowed.
Linking: {X1r=X2w, Y2r=Y1w}

The obvious linking works. Note that the constraint R1=1+R1*R1-R1 must
be verified to have a unique solution. This particular case is easy because the
technique of propagating values may be used to determine that 1 is the only
value. In general such systems of constraints may be undecidable.

From [Pug04b]:

Decision: Allowed. Interthread analysis could determine that x
and y are always either 0 or 1, and thus determine that r2 is always
1. Once this determination is made, the write of 1 to y could be
moved early in thread 1.

56

A.3.2 Test 9

Program Simplified Action Set

init x=0;
init y=0;
thread {
r1=x;
r2=1+r1*r1-r1;
y=r2;
} |
thread {
r3=y;
x=r3;
}
thread {
x=2;
}

R1=r(X1r),
R2=1+R1*R1-R1,
w(Y1w)=R2,

R3=r(Y2r),
w(X2w)=R3

w(X3w)=2

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: Allowed.
Linking: { r(X1r)=w(X2w), r(Y2r)=w(Y1w)}
Comments: Same as(8). Note that the presence of the third thread

has no bearing on the result. (See Linking Monotonic-
ity, Section 2.6.)

The extra thread can be ignored by Link Monotonicity.
From [Pug04b]:

Decision: Allowed. Similar to test case 8, except that the x is not
always 0 or 1. However, a compiler might determine that the read
of x by thread 2 will never see the write by thread 3 (perhaps because
thread 3 will be scheduled after thread 1). Thus, the compiler can
determine that r1 will always be 0 or 1.

57

A.3.3 Test 9a

Program

init x=2;
init y=0;
thread {
r1=x;
r2=1+r1*r1-r1;
y=r2;
} |
thread {
r3=y;
x=r3;
} |
thread {
x=0;
}

Behavior: r1==r2==1
Decision: Allowed.
HB semantics: Allowed.

Same as Test 9, except that the initial value of x and the value written by
Thread3 are swapped. This has no bearing on the run establishing the question.

From [Pug04b]:

Decision: Allowed. Similar to test case 8, except that the x is
not always 0 or 1. However, a compiler might determine that thread
3 will always execute before thread 1, and that therefore the initial
value of 2 will not be visible to the read of x in thread 1. Thus, the
compiler can determine that r1 will always be 0 or 1.

A.4 Unresolvable mutual dependencies

This section covers some cases in which linkings are forbidden because they
would correspond to generating concrete read values from “thin air”, i.e. values
that have not been communicated by a thread to memory, or because there are
mutually unresolvable dependencies, i.e. values cannot be established uncondi-
tionally, via logical reasoning.

58

A.4.1 Test 4

Program Action Set

init x=0;
init y=0;
thread {
r1=x;
y=r1;
} |
thread {
r2=y;
x=r2;
}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
i(T1c, T1),
r(X1r,1,x),
w(R1w,1,r1), w(R1w)=r(X1r),
r(R1r,1,r1),
w(Y1w,1,y), w(Y1w)=r(R1r),
x(T1d,T1),
Xi<<Yi<<T1c<<X1r<R1w<<R1r<<Y1w<<T1d,

i(T2c,T2),
r(Y2r,2,y),
w(R2w,2,r2), w(R2w)=r(Y2r),
r(R2r,2,r2),
w(Y2w,2,y), w(Y2w)=r(R2r),
x(T2d,T2),
Yi<<T2c<<Y2r<<R2w<<R2r<<Y2w<<T2d

Behavior: r1==r2==1
Decision: Forbidden.
HB semantics: ok
Linkage: {r(X1r)=w(X2w), r(R1r)=w(R1w),

r(R2r)=w(R2w), r(Y2r)=w(Y1w)}
Comment: Not a solution.

The proposed linkage is not a solution because it does not uniquely force
the variables: simply forces all the variables to be the same. No other linkage
produces this behavior either. Thus the requirement that the set of constraints
have a unique solution is the mechanism used by CCM Machines to disallow
“reads from thin air”.

From [Pug04b]:

Decision: Forbidden: values are not allowed to come out of thin
air

59

A.4.2 Test 5

Program

init x=0;
init y=0;
init z=0;
thread {
r1=x;
y=r1;
} |
thread {
r2=y
x=r2
} |
thread {
z=1;
} |
thread {
r3=z;
x=r3;
}

Behavior: r1==r2==1, r3==0
Decision: Forbidden.
HB semantics: ok

Similar to the previous case, by Linking Monotonicity.
From [Pug04b]:

Decision: Forbidden: values are not allowed to come out of thin
air, even if there are other executions in which the thin-air value
would have been written to that variable by some not out-of-thin air
means.

60

A.4.3 Test 10

Program Action Set

init x=0;
init y=0;
init z=0;
thread {
r1=x;
if (r1==1) {
y=1;
}
} |
thread {
r2=y;
if (r2==1) {
x=1;
}
}
thread {
z=1;
} |
thread {
r3=z;
if (r3==1) {
x=1;
}
}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
w(Zi,0,z), w(Zi)=0,
i(T1c, T1),
r(X1r,1,x),
w(R1w,1,r1), w(R1w)=r(X1r),
r(R1r,1,r1),
(r(R1r)==1) -> (w(Y1w,1,y), w(Y1w)=1),
x(T1d,T1),
Xi<<Yi<<Zi<<T1c<<X1r<R1w<<R1r<<Y1w<<T1d,

i(T2c,T2),
r(Y2r,T2,y),
w(R2w,T2,r2), w(R2w)=r(Y2r),
r(R2r,T2,r2),
r(R2r)==1) -> (w(X2w,T2,x), w(X2w)=1),
x(T2d,T2),
Zi<<T2c<<Y2r<<R2w<<R2r<<X2w<<T2d

i(T3c,T3),
w(Z3w,T3,z), w(Z3w)=1,
x(T3c,T3),
Zi<<Z3W

i(T4c,T4),
r(Z4r,T4,4),
w(R3w,T4,r3), w(R3w)=r(Z4r),
r(R3r,T4,r3),
r(R3r)==1) -> (w(X4w,T4,x), w(X4w)=1),
x(T4d,T4),
Zi<<T4c<<X4r<<R3w<<R3r<<X4w<<T4d

Behavior: r1==r2==1, r3==0
Decision: Forbidden.
HB semantics: ok
Linking: { r(X1r)=(r(R2r)==1)?w(X2w):w(Xi),

r(Y2r)=(r(R1r)==1?w(Y1w):w(Yi), r(Z4r)=w(Zi)}

To obtain r3==0, r(Z4r) must be linked to w(Zi). But then the only possi-

61

ble linking for r(X1r) that can generate the value 1 is the given one. However,
the constraints simplify to r(R1r)=1 <-> r(R2r)=1 which has many solutions.
Hence this solution must be rejected. There are no other possibilities for ob-
taining the desired result.

Operationally, note that there is no way to unconditionally establish a value
for X1r. This means that multiple choices are possible, because the condition can
always be falsified yielding a situation in which the variable is not constrained.

From [Pug04b]:

Decision: Forbidden. This is the same as test case 5, except
using control dependences rather than data dependences.

A.4.4 Test 13

Program

init x=0;
init y=0;
thread {
r1=x;
if (r1==1) {
y=1;
}
}
thread {
r2=y;
if (r2==1) {
x=1;
}
}

Behavior: r1==r2==1
Decision: Forbidden.
HB semantics: ok
Comments: Same as Test 10 with extra threads. By Linking Mono-

tonicity (Section 2.6) this is also forbidden.

From [Pug04b]:

Decision: Disallowed. In all sequentially consistent executions,
no writes to x or y occur and the program is correctly synchronized.
The only SC behavior is r1 == r2 == 0.

62

A.4.5 Figure 11

Program Simplified Action Set

init x=0;
init y=0;
thread {
r1=x;
if (r1!=0) {
y=1;
}
}
thread {
r2=y;
if (r2!=0) {
x=1;
}
}

Xi=0, Yi=0,
R1=X1r,
R1!=0 -> Y2w=1,
R2=Y2r,
R2!=0 -> X2w=1

Behavior: r1==r2==0
Decision: Should be the only behavior.
HB semantics: ok

The desired behavior arises from the linking X1r=Xi,Y1r=Yi. Another possi-
bility is X1r=(R2!=0)?X2w:Xi. This case reduces to the previous one if the link-
ing for Y1r is Y1r=Yi. Symmetrically for the case in which Y2r=(R1!=0)?Y1w:Yi
and X1r=Xi. Consider the only case left,

{X1r=(R2!=0)?X2w:Xi, Y2r=(R1!=0)?Y1w:Yi}

This reduces to R1=(R2!=0)?1:0, R2=(R1!=0)?1:0 which has two solutions
(R1=R2=1 and R1=R2=0) and is hence inadmissible.

Operationally, there is no way to discharge either conditional, hence 1 cannot
be unconditionally liberated for x or y.

63

A.4.6 Figure 19

Program Action Set

init x=0;
init y=0;
init z=0;
thread {
r1=x;
if (r1!=0) {
y=r1;

}
} |
thread {
r2=y;
if (r2!=0) {
x=r2
}
} |
thread {
z=1;
} |
thread {
r0=z;
if (r0==1) {
x=42;

}
}

w(Xi)=0, w(Yi)=0, w(Zi)=0,
R1=r(X1r),
R1!=0 -> w(Y1W)=R1,

R2=r(Y2r),
R2!=0 -> w(X2w)=R2,

w(Z3w)=1,

R0= r(Z4r),
R0==1 -> w(X4w)=42

Behavior: r0=0, r1==r2==42
Decision: Forbidden.
HB semantics: ok
Linkage: {r(X1r)=(R2!=0)?w(X2w):w(Xi),

r(Y2r)=(R1!=0)?w(Y1w):w(Yi),}
r(Z4r)=w(Zi)}

The analsysis is similar to Figure 11. The constraints simplify to
R1=(R2!=0)?R2:0 and R2=(R1!=1)?R1:0. This is the same as R1=R2 and is
vacuously true, i.e. any valuation is a solution. Hence this solution must be
rejected.

64

A.5 Array references

A.5.1 Test 12

Program Action Set

init x=0;
init y=0;
init a=[1,2];
thread {
r1=x;
a[r1]=0;
r2=a[0];
y=r2;

} |
thread {
r3=y;
x=r3;

}

w(Xi,0,x), w(Xi)=0,
w(Yi,0,y), w(Yi)=0,
w(A0i,0,a[0]), w(A0i)=1,
w(A1i,0,a[1]), w(A1i)=2,
i(T1c, T1),
r(X1r,T1,x),
w(R1w,T1,r1), w(R1w)=r(X1r),
r(R1r,1,r1),
w(AR1w,T1, a[R1r]), w(AR1w)=0,
r(A01r, T1, a[0]),
w(R2w,T1,r2), w(R2w)=r(A01r)
r(R2r,T1,r2),
w(Y1w,T1,y), w(Y1w)=r(R2r),
x(T1d,T1),
Xi<<Yi<<A0i<<A1i<<T1c<<X1r<R1w<<R1r<<AR1w,
AR1w<<A01r<<R2w<<R2r<<Y1w<<T1d,

i(T2c,T2),
r(Y2r,T2,y),
w(R3w,T2,r3), w(R3w)=r(Y2r),
r(R3r,T2,r3),
w(X2w,T2,x), w(X2w)=r(R3r),
x(T2d,T2),
A1i<<T2c<<Y2r<<R3w<<R3r<<X2w<<T2d

Behavior: r1==r2==r3==1
Decision: Forbidden.
HB semantics: ok
Linkage: r(X1r)=w(X2w),r(Y2r)=w(Y1w),

r(A01r)=(r(R1r)=0)?w(AR1w):w(A0i)

The Order Model forces the linking for r(A01r), since the only accesses to
the array are from Thread T1.

But this constraint simplifies to r(R1r)=(r(R1r)=0)?0:1 which has two
solutions r(R1r)=0 and r(R1r)=1. Hence this linking is not accepted.

No other valid linking generates the required behavior.
Let a be the action set given above. Note that the following linking does

65

generate the desired behavior:

{r(A01r) = w(A0i), r(X1r) = w(X2w), r(Y2r) = w(Y1w)}

However, this is not a valid linking for a: the write term w(A0i) is not visible
to A01r in a. To see this, consider the extension a′ = a ∪ {r(R1r) = 0}. Now
a′ ` w(AR1w, T1, a[0]). The visibility rules of the underlying Order Model force
this event on a[0] to hide the event A0i.

Thus, through the write visibility criteria, CCM Machines enforce that a
linking cannot answer a read event with a write event that becomes visible to
the read only if the linking is established. Visibility must be established before
the linking is established.

From [Pug04b]:

Decision: Disallowed. Since no other thread accesses the array
a, the code for thread 1 should be equivalent to:

r1 = x
a[r1] = 0
if (r1 == 0)

r2 = 0
else
r2 = 1

y = r2

With this code, it is clear that this is the same situation as test
4.

66

A.6 Statement Reordering

A.6.1 Test 7

Program Simplified Action Set

init x=0;
init y=0;
init z=0;
thread {
r1=z;
r2=x;
y=r2;
} |
thread {
r3=y;
z=r3;
x=1;
}

R1=r(Z1r),
R2=r(X1r),
w(Y1w)=R2,

R3=r(Y2r),
w(Z2w)=R3,
w(X2w)=1

Behavior: r1==r2==r3==1
Decision: Allowed.
HB semantics: Allowed.
Linking: { r(Z1r)=w(Z2w), r(X1r)=w(X2w),

r(Y2r)=w(Y1w)}
Comments:

The obvious linking works. This is the classic example of the commutativity
and associativity of constraints: the order of constraint imposition does not
matter.

From [Pug04b]:

Decision: Allowed. Intrathread transformations could move r1 =
z to after the last statement in thread 1, and x = 1 to before the first
statement in thread 2.

67

A.6.2 Test 11

Program

init x=0;
init y=0;
init z=0;
thread {
r1=z;
w=r1;
r2=x;
y=r2;
} |
thread {
r4=w;
r3=y;
z=r3;
x=1;
}

Behavior: r1==r2==r3==r4==1
Decision: Allowed.
HB semantics: ok

The obvious linking works.
From[Pug04b]:

Decision: Allowed. Reordering of independent statements can
transform the code to:

Thread 1:
r2 = x
y = r2
r1 = z
w = r1

Thread 2:
x = 1
r3 = y
z = r3
r4 = w

after which the behavior in question is SC.
Note: This is similar to test case 7, but extended with one more

rung in the ladder

68

A.6.3 Test 16

Program Simplified Action Set

init x=0;
thread {
r1=x;
x=1;
} |
thread {
r2=x;
x=2;
}

R1=X1r,
X1w=1,

R2=X2r,
X2w=2

Behavior: r1==2,r2==1
Decision: Allowed.
HB semantics: ok
Linking: X1r=X2w, X2r=X1w
Comments: The obvious linking works.

The obvious linking works.
From [Pug04b]:

Decision: Allowed.

69

A.6.4 Figure 10

Program Simplified Action Set

init x=0;
init y=0;
thread {
x=1;
r1=y;
} |
thread {
y=2;
r2=x;
}

X1w=1,
R1=Y1r,

Y2w=2,
R2=X2r,

Behavior: r1==1,r2==0
Decision: Allowed.
HB semantics: ok
Linking: Y1r=Yi, X2r=Xi
Comments: The obvious linking works.

The obvious linking works.
From [Pug04b]:

Decision: Allowed.

70

A.7 Volatile Reads

A.7.1 Test 14

Program

init a=0;
init b=0;
volatile y=0;
thread {
r1=a;
if (r1==0) {
y=1;
} else {
b=1;
}
} |
thread {
do {
r2=y;
r3=b;
} while (r2+r3==0)
a=1;

Behavior: r1==r3==1, r2==0
Decision: Forbidden.
HB semantics: ok

Let us consider the action sets generated by the main thread and the two
threads separately. The maximal action set generated by the main thread is s0:

n(a), w(Ai,0,a), w(Ai)=0,
n(b), w(Bi,0,b), w(Bi)=0,
v(y), w(Yi,0,y), w(Yi)=0,
Ai<<Bi<<Yi

The maximal action set that can be generated by the first thread is s1:

i(T1c,T1)
r(A1r,T1,a),
w(R1w,T1,r1), w(R1w)=r(A1r),
r(R1r,T1,r1),
r(R1r)==0 -> (w(Y1w,T1,y),w(Y1w)=1),
!(r(R1r)==0) -> (w(B1w,T1,b),w(B1w)=1),
x(T1d,T1),
T1c<<A1r<<R1w<<R1r,

71

R1r<<Y1w<<T1d,
R1r<<B1w<<T1d

The action sets generated by the second thread depend on how many times
the loop is unrolled. For instance, unrolling it once (k = 1) will give:

r2=y;
r3=b;
if (r2+r3==0)) {
do {
r2=y;
r3=b;
} while (r2+r3==0)

}
a=1;

Similarly for k > 1. For k = 1 we can get the action set s2:

r(Y2r,T2,y),
w(R2w,T2,r2), w(R2w)=r(Y2r),
r(B2r,T2,b),
w(R3w,T2,r3), w(R3w)=r(B2r),
r(R2r,T2,r2),
r(R3r,T2,r3),
!(r(R2r)+r(R3r)==0) -> (w(A2w,T2,a),w(A2w)=1)

This can be generated by the Out of Order execution rule because:

T, z, !(r(R2r) + r(R3r) == 0) ` (r(R2r) + r(R3r)) == 0 → S −→ ε

Now, can s0 ∪ s1 ∪ s2 generate the desired behavior? The only possibility is
the linking:

{r(A1r) = (!(r(R2r) + r(R3r) == 0))?w(A2w) : w(Ai),
r(Y2r) = (r(R1r) == 0)?w(Y1w) : Yi,
r(B2r) = (!(r(R1r) == 0))?w(B1w) : Bi,
r(R1r) = w(R1r), r(R2r) = w(R2w), r(R3r) = w(R3w)}

When added to s0 ∪ s1 ∪ s2, this forces:

{r(A1r) = (!(r(Y2r) + r(B2r) == 0))?1 : 0,
r(B2r) = (r(A1r)! = 0)?1 : 0,
r(Y2r) = (r(A1r) == 0)?1 : 0}

and this does indeed have a single solution.
However, this solution is not admissible. Because of the volatile read require-

ment, the new store must have Y1w<<Y2r. Therefore, this constraint has to be
added as part of oi (synchronization conditions). But under this constraint,
A1r<<A2w and hence the linking for A1r is not valid.

From [Pug04b]:

72

Decision: Disallowed In all sequentially consistent executions, r1
= 0 and the program is correctly synchronized. Since the program is
correctly synchronized in all SC executions, no non-sc behaviors are
allowed.

A.7.2 Test 15

Program

init a=0;
init b=0;
volatile x=0;
volatile y=0;
thread {
r0=x;
if (r0==1) {
r1=a;

} else {
r1=0;

}
if (r1==0) {
y=1;
} else {
b=1;
}
} |
thread {
do {
r2=y;
r3=b;
} while (r2+r3==0);
a=1;
} |
thread {
x=1;
}

Behavior: r0==r1==r3==1, r2==0
Decision: Forbidden.
HB semantics: ok

This reduces to the previous case if the read for x in Thread 1 is answered
by the write in Thread 3. This is the only possibility for achieving r1==1.

From [Pug04b]:

73

Decision: Disallowed In all sequentially consistent executions, r1
= 0 and the program is correctly synchronized. Since the program is
correctly synchronized in all SC executions, no non-sc behaviors are
allowed.

74

